
Fake It ‘til We Make It: 
 

The Art of Windows User Space Emulation 

Who am I? 
Maurice Heumann 
● DRM Developer @ WIBU-SYSTEMS 

○ DRM company in Karlsruhe, Germany 
 
● Reversed & Bypassed many DRMs:  

○ Steam CEG → many (older) Steam games 
○ Arxan → Call of Duty, GTA V, Fortnite (old), … 
○ Denuvo → Hogwarts Legacy, … 
○ … 

 
● Twitter: momo5502 

Agenda 
● What is Windows User Space Emulation? 
● What are the Applications? 
● Existing Solutions 
● Implementation 
● Demo 
● Final Words 

Windows User Space Emulation 
What’s that? 

What’s that? 
Emulation 

● code runs on virtual CPU 
● hardware is simulated 
● full control of executed code 

Windows User Space Emulation 

● process runs in emulator 
● OS + kernel is simulated 

What’s that? 
Emulator offers hooking points 

● memory access hook 
○ read, write, execute 

● instruction execution hook 
○ syscall, cpuid, rdtsc 

● new code path execution hook 

What are the applications? 

DRM Analysis 
● modern DRMs are too strong 

○ obfuscation/anti tampering/anti debugging/… 
○ static/dynamic analysis often impossible 

 

● hooking points allow easy analysis 
● external communication can be intercepted 
● execution flow can be traced 

 

→ Emulation was key for Denuvo analysis 

Vulnerability Analysis 
● blackbox fuzzing within the emulator 
● input can be randomized 
● emulator state can be saved/restored 
● coverage feedback through hooks 
● execution is predictable and repeatable 

Malware Analysis 
Similar to DRM Analysis 

● hooking points allow easy analysis 
● external communication can be intercepted 
● execution flow can be traced 

→ seems widely adopted already 

Mobile Gaming? 
● applications & games on mobile 
● a lot of work needed 
● performance might be too bad for gaming? 
● only suited for old games? 

→ still a dream I have 😄 

Existing Solutions 

Existing Solutions 
● Qiling, Speakeasy, Dumpulator, … 

○ are written in Python 

 

● DRM analysis requires a lot of hooks 
○ e.g. hooking every memory read 
○ can be extremely slow in Python 

 

→ I need speed: C++ 

Existing Solutions 
● Binee, Unicorn PE, … 

○ emulate on API level 

 

● every API function from every DLL is reimplemented 
● incomplete → there are so many APIs 
● error prone → every reimplementation can contain bugs 

 

→ I want to reuse all DLLs on my system 

Architecture 

Architecture 

x86/x64 CPU Emulation Layer 

OS Awareness Layer 

PE Loader  Debugger Memory  Syscalls 

Exceptions  Threads  State Manager 

Architecture 
● 3rd Party: Unicorn Emulator 
● based on QEMU 
● reasonably fast → TCG

x86/x64 CPU Emulation Layer 

OS Awareness Layer 

PE Loader  Debugger Memory  Syscalls 

Exceptions  Threads  State Manager 

Architecture 
● 3rd Party: Unicorn Emulator 
● based on QEMU 
● reasonably fast → TCG

● own implementation 
● essentially a virtual kernel 
● emulates on syscall level

x86/x64 CPU Emulation Layer 

OS Awareness Layer 

PE Loader  Debugger Memory  Syscalls 

Exceptions  Threads  State Manager 

PE Loading 

PE Loading 
● Portable Executables (EXE & DLLs) 

○ are mapped by the kernel 
○ NtMapViewOfSection syscall 

● Kernel maps: 
○ Headers 
○ Sections with permissions 
○ Relocations 

 
→ Imports are resolved by NTDLL 
→ DllMain is called by NTDLL 

PE Loading 
● Executable and NTDLL are always mapped at process start 
● other DLLs are mapped on demand via NTDLL 

 

Memory Manager 

Memory Manager 
● Unicorn supports basic memory 

○ with permissions: read/write/execute 
● Windows supports more types 

○ reserved 
○ committed 
○ guard pages 
○ … 

→ must be implemented ontop of Unicorn 

Memory Manager 
Mapped memory 

● TEB → Thread Environment Block 
○ thread specific storage 

● PEB → Process Environment Block 
○ process specific storage 

● KUSER_SHARED_DATA 
○ quick access to important data → faster than syscalls 
○ e.g. current time, processor info, OS version, … 
○ always mapped at 0x7FFE0000 

Syscalls 

Syscalls 

Syscalls 

Syscalls 

Syscalls 
● 409 regular syscalls → ntdll.dll 
● 1474 UI syscalls → win32u.dll 

→ Emulator can use syscall instruction hook 

 

Syscall IDs 

● e.g. NtOpenFile → 0x33 
● IDs can vary between Windows versions 

→ How to find Syscall IDs? 

Syscalls 
● Filter NTDLL exports starting with Nt 
● Sort exports by address 

 

→ Order matches Syscall IDs 
○ NtAccessCheck → 0 
○ NtWorkerFactoryWork… → 1 
○ NtAcceptConnectPort → 2 
○ … 

Syscalls 
→ Syscalls now need to be implemented 1 by 1… 

● I/O 
● Registry 
● RPC 
● Events 
● … 

Exception Handling 

Exception Handling 
● critical exceptions are handled by the kernel 

○ memory violation 
○ invalid instruction 
○ breakpoints 
○ … 

● kernel forwards to the application 
○ invokes NTDLL → KiUserExceptionDispatcher 

Exception Handling 
● receives arguments on stack 

○ EXCEPTION_RECORD 
○ CONTEXT 
○ a few other things 

● forwards to  

→ RtlDispatchException 

● performs unwinding 
● calls exception handlers 
● … 

Exception Handling 
Implementation in Emulator 

● Unicorn supports hooks for interrupts/violations 
● build EXCEPTION_RECORD and CONTEXT on stack 
● invoke KiUserExceptionDispatcher from emulator 

Threads 

Threads 
→ Unicorn has no thread awareness 

 

Custom abstraction needed 

● Scheduling 
● Real Threading 

Scheduling 
● Round-robin like scheduler 
● Threads share emulator 
● Context switches after N instructions 
● Predictable, but slow 

 
Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread 1 

Thread 2 

Real Threading 
● Multiple threads on the emulator host 
● One emulator instance per thread 
● Shared memory 
● Fast, but unpredictable 

 
Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread Start 
LdrInitializeThunk 

● performs initialization 
● runs DllMain & TLS callbacks 
● APC call ends with ZwContinue 

 

RtlUserThreadStart 

● entry-point of the thread 
● runs the thread routine 

State Management 

State Management 
● Emulator should store & restore state 
● two variants: 

○ serialization 
○ snapshots 

Serialization 
● serializes entire emulation state 

○ memory 
○ registers 
○ mapped modules 
○ syscall mapping 
○ … 

● results in a byte stream 

→ can be used e.g. for DRM analysis 

 

Snapshot 
● snapshots of volatile emulation state 

○ memory → incremental changes 
○ registers 
○ … 

● only works in-process 
● extremely fast 

→ can be used for fuzzing 

 

Debugger 

Debugger 
GDB serial protocol 

● simple text protocol over TCP 
● registers and memory can be read & written 
● supports normal execution and single stepping 
● protocol supported by many debuggers 

○ GDB 
○ LLDB 
○ VS Code 
○ IDA Pro 
○ … 

Debugger 

Debugger 
(IDA Pro, GDB, …) 

Emulator 

GDB Handler 

Emulated Process 

Commands 

Responses 

Control  State 

Demo 

Final Words 

Final Words 
● Emulation is pretty fast → JIT 

 

● Hooks provide analysis interfaces 
○ Memory read/write/execute 
○ Instruction execution 
○ Code coverage 

 

● can be helpful for 
○ DRM Analysis 
○ Malware Analysis 
○ Security Research 

Final Words 
● still in development 
● has no name yet :D 
● open source  
→ github.com/momo5502/emulator 
 
● a lot of work left todo 

○ threading only partially implemented 
○ hundreds of syscalls left 
○ scripting interfaces → Python / JavaScript / … 
○ eventually replace Unicorn 

 

Thank you 
Questions? 

