Fake It 'til We Make It:

The Art of Windows User Space Emulation

Who am I?

Maurice Heumann

e DRM Developer @
o DRM company in Karlsruhe, Germany

e Reversed & Bypassed many

— many (older) Steam games
= aller ey, GIA Y, Fortnite (old), ...
— Hogwarts Legacy, ...

@ O O

o [Witter:

Agenda

e What is Windows User Space Emulation?
e \What are the Applications?

e Existing Solutions

e Implementation

e Deo

e Final Words

Windows User Space Emulation

What's that?

What's that?

Emulation

e CoOde runs on virtual CPU
e hardware is simulated
o full control of executed code

Windows User Space Emulation

e DlGecsE KRS (B efrllator
e OS5 + kernel s simiilated

What's that?

Emulator offers hooking points

e Memory access hook
o read, write, execute
e INstruction execution hook
e susaall eElid rdesc
e nNew code path execution hook

What are the applications?

DRM Analysis

e modern DRMSs are too strong
o Obfuscation/anti tampering/anti debuggingr/...
o static/dynamic analysis often impossible

e hooking points allow easy analysis
e external communication can be intercepted
e execution flow can be traced

— Emulation was key for Denuvo analysis

Vulnerability Analysis

e blackbox fuzzing within the emulator

e iNput can be randomized

o emulator state ean be saved/restored

e coverage feedback through hooks

e execution is predictable and repeatable

Malware Analysis

Similar to DRM Analysis

o hooking points allow easy analysis
e external communication can be intercepted
e execution flow can be traced

— seems widely adopted already

Mobile Gaming?

e applications & games on mobile

e alot of work needed

e performance might be too bad for gaming?
e oOnNly suited for old games?

— still a dream [have @

Existing Solutions

Existing Solutions

e Qiling, Speakeasy, Dumpulator, ...
o are written in Python

o DRM analysis requires a lot of hooks
o e GEllemdnG every memory read
o can be extremely slow in Python

— [heed speed: €+

Existing Solutions

s Binee | nleorn PE ..
o emulate on API level

e every API function from every DLL is reimplemented
e INncomplete — there are so many APIs
e Eerror prone — every reimplementation can contain bugs

— [want to reuse all DLLs on my system

Architecture

Architecture

x86/x64 CPU Emulation Layer

OS Awareness Layer

a1

Debugger

Architecture

e 3rd Party: Unicorn Emulator
e based on QEMU ey x86/x64 CPU Emulation Layer

e reasonably fast — TCG

OS Awareness Layer

S e

Debugger

Architecture

3rd Party: Unicorn Emulator
based on QEMU
reasonably fast — TCG

x86/x64 CPU Emulation Layer

own implementation
essentially a virtual kernel
emulates on syscall level

g

OS Awareness Layer

a1

Debugger

PE Loading

PE Loading

e Portable Executables (EXE & DLLS)
o dre [apped Dy ine Kernel
o NtMapViewOfSection syscall
o Kernel maps:
oi Eeadels
o Sections with permissions
o Relocations

— Imports are resolved by NTDLL
— DlIMain is called by NTDLL

PE Loading

o Executable and NTDLL are always mapped at process start
e Gl LI Sicmalped on delficdnd via NIDEL

Memory Manager

Memory Manager

e Unicorn supports basic memory

o With permissions: read/write/execute
o Windows supports more types

o reserved

o committed

o qguard pages

O

— must be implemented ontop of Unicorn

Memory Manager

Mapped memory

e TEB — Thread Environment Block
o thread specific storage

e PEB — Process Environment Block
o process specific storage

e KUSER SRIARED DATA

o quick access to important data — faster than syscalls
o e.@ CUEICEE e bioeessor into, OS5 version, .
o always mapped at 0x7FFEQ0OO

Syscalls

Syscalls

Lalla] =
; Exported entry 437. NtOpenFile
; Exported entry 2082. ZwOpenFile

public NtOpenFile
NtOpenFile proc near

ShareAccess= dword ptr 28h
OpenOptions= dword ptr 36h

mov P10, FEX ; NtOpenFile
mov eax, 33h
test byte ptr ds:7FFE@308h, 1
jnz short loc_1801629B5
v) I []
A A
syscall ; Low latency system call
retn loc_1801629B5: ;3 DOS 2+ internal - EXECUTE COMMAND
int 2Eh ;3 DS:SI -> counted CR-terminated command string
retn

NtOpenFile endp

Syscalls

Lalla] =
; Exported entry 437. NtOpenFile
; Exported entry 2082. ZwOpenFile

public NtOpenFile
NtOpenFile proc near

ShareAccess= dword ptr 28h
OpenOptions= dword ptr 36h

mov P10, FEX ; NtOpenFile

mov eax, 33h ; '- 44—

test byte ptr ds:7FFE@308h, 1

jnz short loc_1801629B5
v : ' v
A L] =
syscall ; Low latency system call
retn loc_1801629B5: ; DOS 2+ internal - EXECUTE COMMAND
int 2Eh ;3 DS:SI -> counted CR-terminated command string
retn

NtOpenFile endp

Syscalls

Lalla] =
; Exported entry 437. NtOpenFile
; Exported entry 2082. ZwOpenFile

public NtOpenFile
NtOpenFile proc near

ShareAccess= dword ptr 28h
OpenOptions= dword ptr 36h

mov P10, FEX ; NtOpenFile
mov eax, 33h
test byte ptr ds:7FFE@308h, 1
jnz short loc_1801629B5
v : ' v
M A L] =
syscall ; Low latency system call
retn loc_1801629B5: ; DOS 2+ internal - EXECUTE COMMAND
int 2Eh ;3 DS:SI -> counted CR-terminated command string
retn

NtOpenFile endp

Syscalls

e 409 regular syscalls — ntdll.dll
o 1474 UI syscalls — win32u.dll

— Emulator can use syscall instruction hook

Syscall IDs

e e.g. NtOpenkFile — 0x33
e IDs can vary between Windows versions

— How to find Syscall IDs?

Syscalls

Name Address

' I I h # NtAccessCheck 0000000180162340
o I:l |te r N T D L L ex p O rtS Sta rtl n g W It i NtWorkerFactoryWork... 0000000180162360
NtAcceptConnectPort 0000000180162380
P S O rt ex p O rtS by a d d re S S # NtMapUserPhysicalPag... 00000001801623A0
i NtWaitForSingleObj... 00000001801623C0
E NtCallbackReturn 00000001801623E0
i NtReadFile 0000000180162400
i NtDeviceIoControlF... 0000000180162420
E NtWriteFile 0000000180162440
i NtRemoveloCompletion 0000000180162460
H NtReleaseSemaphore 0000000180162480
= O rd e r m atC h e S SyS Ca | | I D S B NtReplyWaitReceivePort 00000001801624A0
i NtReplyPort 00000001801624C0
E NtSetInformationThread 00000001801624E0
o NtAccessCheck — 0 % NtSetEvent 0000000180162500
i NtClose 0000000180162520
o NtWorkerFacto ry\/\/o e o] NtQueryObject 0000000180162540
H NtQueryInformationFile 0000000180162560
i NtOpenKey 0000000180162580
o NtAcce pt ConnectPort — 2 B NtEnumerateValueKey ~ 00000001801625A0
H NtFindAtom 00000001801625C0

© i E NtQueryDefaultLocale 00000001801625E0

Syscalls

— Syscalls now need to be implemented 1 by 1...

e /1

e Redgistry
¢ Pl

s i

Exception Handling

Exception Handling

o cCritical exceptions are handled by the kernel
o memory violation
o invalid instruction
o breakpoints
O
e Kkernel forwards to the application
o invokes NTDLL — KiUserExceptionDispatcher

Exception Handling

receives arguments on stack
o EXCERTIGIN RECORD

o LONIEXE

o a few other things

forwards to
— RtIDispatchException

performs unwinding
calls exception handlers

A
; Exported entry 107. KiUserExceptionDispatcher

y vold

__stdcall KiUserExceptionDispatcher(PE

public KiUserExceptionDispatcher

KiUserExceptionDispatcher proc near

cld
mov
test

jz

rax, cs:Wow64PrepareForException

rax, rax
short loc_1801663BC

mAE
mov
add
mov
call

FEX;
BEX;
rdx,

rax

A

XCEPTION_RECORD ExceptionRecord, PCONTEXT Context)

rsp

4F@h

rsp
Wow64PrepareForException

Vi

loc_1801663BC:
mov
add
mov
call
test

iz

rcx, rsp
rcx, 4Feh

rdx, rsp
Rt1lDispatchException
al, al

short loc_1801663DE
|

Exception Handling

Implementation in Emulator

e Unicorn supports hooks for interrupts/violations
e nliiid EXCERROIEREC ORD and CONTEXT@on stack
o invoke KiUserExceptionDispatcher from emulator

Threads

Threads

. lnlcern Aas ne thread anareness

Custom abstraction needed

e Scheduling
e Real Threading

Scheduling

e Round-robin like scheduler

e Threads share emulator

o Context switches after N instructions
e Predictable, but slow

Thread 1

Thread 1
Thread 3

Thread 4

Real Threading

o Multiple threads on the emulator host
e One emullator instance per thread

e Shared memory

e Fast, but unpredictable

Thread 1
Thread 2

Thread 3

Thread 4

Thread Start

LdrinitializeThunk

e APC call ends with ZwContinue —*

performs initialization
runs DIIMain & TLS callbacks

RtlUserThreadStart

entry-point of the thread
runs the thread routine

" AE

; Exported entry 142. LdrInitializeThunk

blic LdrInitializeThunk
LdrInitializeThunk proc near

push
sub
mov
call
mov
mov
call
mov
call

rbx

rsp, 20h

b, FEX
LdrpInitialize
di; 1

rcx, rbx
ZwContinue
ecx, eax
RtlRaiseStatus

mAE
; Exported entry 1633. RtlUserThreadStart

public RtlUserThreadStart
RtlUserThreadStart proc near

5 _unwind { // __C specific_handler
sub rsp, 48h
mov £9, ECX

State Management

State Management

e Emulator should store & restore state

e two variants:
o serialization
o Snapshots

Sl aziier

o Serializes entire emulation state
o memory
o [edistici
o Mmapped modules
o syscall mapping

@)

o results in abyte stream

— can be used e.qg. for DRM analysis

Snapshot

e snapshots of volatile emulation state
o memory — incremental changes
o [edistici

©)

e ONly works in-process
e extremely fast

— Can be used for fuzzing

Debugger

Debugger

GDB serial protocol

o simple text plotecel aver TCP
e registers and memory can be read & written
e Supports normal execution and single stepping

e protocol supported by many debuggers
o GBB
o LB
o VS5 Cade
o A Beg

Debugger

Commands
—>

Debugger

(IDA Pro, GDB, ...) Responses Emulator

<

GDB Handler
Control l TState

Emulated Process

Demo

Final Words

Final Words

o Emulation is pretty fast — JIT

o Hooks provide analysis interfaces
o Memory read/write/execute
o HSHELIcrE execution
o (@decaverage

e cCan be helpful for
o DRM Analysis
o Malware Analysis
o Security Research

Final Words

o still in development
e has no name yet :D
e GhEnR sotlice

— github.com/momo5502/emulator

e alot of work left todo
threading only partially implemented
hundreds of syscalls left

scripting interfaces — Python / JavaScript / ...
eventually replace Unicorn

O 2O @)

Thank you

Questions?

