CRYPTOGRAPHY

Intro

Created by Alkalem, modified by Hanna3-14

\ ”
\k\ 06.06.2024

import pwn

pwn.context.arch = "amd64"
pwn.context.os = "linux"

SHELLCODE = pwn.shellcraft.amd64. linux.echo('Test') + pwn.shellcraft
EXPLOIT = 0x45*b"\x90" + pwn.asm({SHELLCODE, arch="amd64", os="1linux"

PROGRAM = p""
length = 20 + 16
for i in EXPLOIT:
PROGRAM += i*bh'+' + b'>'

if 1 == 1:
length += 5
I A
length += 6
rngth+= 13

AxBEEE - length) > Ox40:
RAM T bII{}II
h += 2*13

P - length) + 7 -1

IF+0x18)*b"<"

host", 1337) as conn:
(b"Brainf*ck code: ")
"ROGRAM)

2()



OVERVIEW

e security goals
e cryptographic ciphers/protocols
= classical cryptography
= randomness
= symmetric cryptography
= asymmetric cryptography
e typical vulnerabilities
e tools
e further topics
e tasks



SECURITY&EOALS

o confidentiality: protecting personal data
e integrity: data has not been modified
o authenticity: exactly what is claimed



CLASSICALERYPTOGRAPHY
CAESAR CIPHER

e each letter is shifted by a fixed value K

e encryptx (P) = (P + K) mod 26

e decryptg (C) = (C' — K) mod 26
Example for K = 23:

Plaintext: T H E Q U Il C K B R O W N F
Ciphertext: Q E B N R F Z H Y O L T K



CLASSICALERYPTOGRAPHY
VIGENERE CIPHER

e choose a key of multiple letters, shift each letter according to the key letter
e attacks: determine key length, frequency analysis, (Kasiski examination)

Example:
Plaintextt: A T T A C K A T D A W N
G L EM ONLEMONL E
Ciphertextt L X F O P V E F R N H R



CLASSICALERYPTOGRAPHY
ONE TIME PAD (OTP)

e Use key with same length as plaintext

o information-theoretically secure, if key is chosen equally distributed at random
and used only once

e kKey exchange needs to be done separately via a secure channel

e mostly not realizable



RANDOMNESS

e in most programming languages default pseudo-random
number generators (PRNGs) are not cryptographically secure

= state can be recovered

e cryptographically secure RNGs:
= /dev/urandom
= hardware RNGs
= RNGs of the cryptographic libraries
(e.g., secrets or Crypto.Random in python)



SYMMETRICERYPTOGRAPHY
STREAM CIPHERS

e pseudo-random key stream generated from key with an PRNG

o key stream is XORed with plaintext stream

e examples: RC4, SEAL, Salsa, CryptMT

e attacks:

= known plaintext: calculate parts of the key stream when parts of plaintext are
Known

= Key reuse: two messages are encrypted with same key stream, difference
(XOR) between plaintexts is observable




SYMMETRICERYPTOGRAPHY

BLOCK CIPHERS

e encrypt blocks of fixed length
e padding: extend messages to full block length
o examples: DES, IDEA, RCS5, AES, Blowfish, ...
e modes of operation: (e.g. ECB, CBC, CTR, GCM)
e attacks:

= against cipher: differential or linear cryptanalysis

m different attacks against different modes of operation




RSASSEEY SENERATION

e choose large prime numbers p and g
e calculate the modulus N = p x g

o calculate p(N) = (p—1) * (¢ — 1)

» choose e with gcd(e, ¢(IN)) =1A1 < e < ¢(N)

e calculate d as inverse of e under modulus ¢(N)
exd=1 mod ¢(N)

e public key: IV, e
e private key: d



RSASENCRYPTIONZENDEECRYPTION

e encryption: ¢ = m® mod NN
e decryption: ¢ = (m¢)? = me? @ed V) — pl mod N
e RSA without special padding is homomorphic
(Enc(mq, pk) * Enc(ms, pk) = Enc(my *x me, pk)) and deterministic
e use RSA-OAEP if that is problematic



RSASRTTACKS

» factoring N has complexity of about exp(log(N): (loglogN)
reasonable choice of N

e In some cases, attacks in polynomial time possible:
= small private exponent d (d < %N%)I Wiener's attack

= for small public exponent or partially known prime factor: Coppersmith's attack
1
= m < INe: calculate message as root of ciphertext

= message sent to many recipients using same public exponent: Hastad's
Broadcast Attack

wlIN

), infeasible for



ELLIPTICEURVES

e elliptic curve equation:
e group: generator point (&, point addition and multiplication with natural number

e cyclic EC group over Z,,p > 3

e point (z,y) on curve iff y* = z3 + ax + b mod p, plus (imaginary) point at
infinity O, a,b € Z,, with 4a® + 27b* £ 0 mod p

e harder to attack, can use smaller keys for same security level



TYPICALZULNERABILITIES

e implementation mistake: incorrect/vulnerable custom implementation,
Incorporated incorrectly into application

e conceptual mistake: incorrect use or not sufficient for use case

e theoretic mistake: violated condition for security, advanced maths or theoretic

computer science necessary, "read the paper”
e well-known and documented attacks (e.g. length extension attack)

e Oracles



TOOLS

e CyberChef

o https://factordb.com/

e sagemath (free open-source mathematics software system)
e /3 (theorem prover)


https://gchq.github.io/CyberChef/
https://factordb.com/
https://www.sagemath.org/
https://z3prover.github.io/

FURTHERZEOPICS

e post-quantum cryptography
e pairing-based cryptography
e zero knowledge



STARTELAYINGERYPTOETF

o https://intro.kitctf.de/

e other platforms:

= https://cryptohack.org/ (Easy to hard, with good explanations)

s hitps://cryptopals.com/ (Implement cryptosystems and attacks)

» hitps://overthewire.org/wargames/krypton (Classical crypto)

s hitps://imaginaryctf.org/ (not only crypto but also other CTF challenges)



https://intro.kitctf.de/
https://cryptohack.org/
https://cryptopals.com/
https://overthewire.org/wargames/krypton
https://imaginaryctf.org/

