
Binary Exploitation
Intro

ju256

1

https://www.youtube.com/watch?v=dQw4w9WgXcQ

Overview
• Finding and exploiting bugs in a binary/executable
• Programs written in low-level language
• Reverse engineering often mandatory first step
• Memory corruption vs logic bugs

2

Binary Exploitation in CTFs

• Often C/C++ binaries written for the
competition

• Sometimes real world targets with
introduced bugs
• Chrome: GPNCTF21 TYPE THIS
• Firefox: 33c3 CTF Feuerfuchs

3

Objective
(Remote) Code Execution / Shell* on challenge server

Linux userspace

 system("/bin/sh");

Linux kernel

...

 setgid(0);
 setuid(0);
 system("/bin/sh");

4

Binary Exploitation in the "Real World"
• Memory-unsafe languages still widely used

• Browsers
• Hypervisors
• Web servers

• Even the "best" codebases contain (a lot of) exploitable bugs

5

Large (dubious) market for 0-days in popular software

6

Twitter content as dubios as the market

7

Hope is not lost if you don't want to sell to those guys¹

• +
•
• ...

ChromeVRP v8CTF
kernelCTF

8

https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://security.googleblog.com/2023/10/expanding-our-exploit-reward-program-to.html
https://google.github.io/security-research/kernelctf/rules.html

Linux process layout

9

Stack frames
 #include <stdio.h>
 #include <stdlib.h>

 int main() {
 int a = 0x1337;
 int b = 0x414141;
 char *c = malloc(0x20);
 printf("&a = %p\n&b = %p\n&c = %p\n",
 &a,
 &b,
 &c);

 return 0;
 }

 &a = 0x7fffffffde58
 &b = 0x7fffffffde5c
 &c = 0x7fffffffde60

10

Buffer Overflows
 #include <stdio.h>

 int main() {
 int var = 0;
 char buf[10];

 gets(buf);

 if (var != 0) {
 puts("Success!");
 }
 return 0;
 }

11

All good if we stay in the buffer

12

Overflowing the buffer

13

Overflowing the buffer

• Control over local variables
• Control over frame base pointer (RBP)
• Control over instruction pointer (RIP)!

RIP = 0x4343434343434343

14

Sidenote: function calls in x86
• call pushes return address onto the stack
• ret pops return address into RIP

 #include <stdio.h>

 void f() {
 puts("asdf");
 }

 int main() {
 f();
 }

15

RIP-control to shell?
Shellcode: Inject our own x86 code into memory and jump to it by overwriting RIP

16

Shellcode

• Read files
• Open sockets
• Spawn shell
• ...

 mov rax, 0x68732f6e69622f ; /bin/sh\x00
 push rax
 mov rdi, rsp
 xor rsi, rsi
 xor rdx, rdx
 mov rax, 0x3b ; SYS_execve
 ; execve("/bin/sh", 0, 0)
 syscall

17

What's the catch?
🤮 Mitigations 🤮

18

🤮 NX-Bit (No eXecute) / DEP 🤮

• Every page is writable XOR executable
• Consequently stack not executable
• Injected shellcode can’t be executed

19

• Enabled by default in all modern
compilers

• Can be disabled with -no-pie

20

🚀 Bypass: Code Reuse Attacks 🚀
• Instead of injecting own code, use existing code
• Reuse code in binary or libraries
• For stack-based buffer overflows:

• Overwrite return address with pointer to existing code snippet ("gadget")
• Gadgets can be chained together if they end in ret instruction

Return-oriented programming (ROP)

21

ROP gadget examples
set register

 pop <REG>
 ret

syscall

 syscall
 ret

64-bit Write

...

 ; set rdi and rax with another gadget
 mov qword [rdi], rax
 ret

22

ROP chain example
execve("/bin/sh", 0, 0)

 pop_rdi_gadget
 &bin_sh // Address of "/bin/sh\x00" string in memory
 pop_rsi_gadget
 0
 pop_rdx_gadget
 0
 pop_rax_gadget
 59 // SYS_execve
 syscall

23

ROP to shell

24

🤮 Mitigate code reuse attacks 🤮
So far we assumed we know addresses of gadgets, functions, libraries and stack

25

Randomized address mappings break our attack

26

🤮 ASLR and PIE 🤮
• Address Space Layout Randomization
• Randomized memory layout on every execution
• Linux ASLR is based on 5 randomized (base) addresses

• Stack, Heap, mmap-Base, vdso
• Random base address for executable only if PIE is enabled

27

🚀 Bypass ASLR and PIE 🚀
Leak primitive

• Leak of 1 library address derandomizes all libraries
• Leak of 1 address in our binary breaks PIE
• Forked processes share layout with parent

28

🤮 Canaries 🤮

• Place (7+(1)) random bytes on stack
• Set up in function prologue and verify untouched in epilogue
• Prevent (linear) stack-based buffer overflows

29

🤮 Canaries 🤮

• Leak primitive for canary neccessary
• Overwrite with correct value possible with leak

30

Tools
• extension for gdb
• for python
•

pwndbg
pwntools
checksec

31

https://github.com/pwndbg/pwndbg
https://docs.pwntools.com/en/stable/
https://github.com/slimm609/checksec.sh

Start playing at intro.kitctf.de

32

http://intro.kitctf.de/

