
Linux namespaces and these things called containers

Martin Wagner
March 16, 2023

1

Outline

• Working from the inside out
• What are namespaces? Why were they created?
• How can they be used for constructing containers
• High level container tutorial & demo

2

Problem

• Global system resources are shared between all processes
• List of mount points
• PID numbers

• Major changes not possible without disruption of the entire system
• Can’t just unmount /
• Only one process can be PID 1

3

Solution: namespaces

• Isolated version of some system resource
• Processes attached to a namespace have a different view on this resource

> ps -e | wc -l
251
> ./demo_1 # spawns shell in new namespace
> ps -e | wc -l
4
> echo $$
1

• Work a bit like “The Matrix”

4

Usecases

• Sandbox and isolation
• Hide parts of the system from a process
• Limits damage in case of vulnerability

• Containers
• Package a known good environment for an application
• Always setup this environment to ensure stability

5

Usage i

• Every process is attached to namespace for every resource
• Eighth namespace types (mounts, pid, users, hostname, time, cgroup, ipc, net)
• Initial default namespaces exist

6

Usage ii

• Links in /proc/*/ns/
• One for each namespace type
• Point to the same inode for processes in the same namespace

• Syscalls
• clone starts a new process in a new namespace
• unshare moves caller in new namespace
• setns takes fd to /proc/*/ns/* and moves caller into that namespace

• Tree shape: process in parent namespace can freely inspect child namespaces

7

Usage iii

./demo

sh

clone(CLONE_NEWPID) + exec(sh)

New PID namespace

Default PID namespace

Default net namespace

8

Example: running a container

int main(int argc, char *argv[]) {
int flags = CLONE_NEWUSER | CLONE_NEWNS;
int pid = clone(child_main, child_stack + sizeof(child_stack),

flags | SIGCHLD, argv);

waitpid(pid, NULL, 0);
return 0;

}

9

Example ii

int child_main() {
mount("./container", "./containers", "bind", MS_BIND | MS_REC, "");
mkdir("./container/oldrootfs", 0755);
syscall(SYS_pivot_root, "./container", "./container/oldrootfs");
chdir("/");

umount2("/oldrootfs", MNT_DETACH);
rmdir("/oldrootfs");

return execvp("sh", NULL);
}

10

Example iii

$ ls /home
martin
$ ls ./container
bin dev home lib64 opt root sbin sys usr
...
$./demo_2
ls /home
hello_from_the_other_side

11

User namespaces

• By default, only root can create new namespaces
• Exception: user namespace

• If enabled, unprivileged users can create new user namespace
• User becomes root in new namespace and can create other namespaces

• Privileged syscalls available to users in user namespaces

12

Integrations

• Sandboxing
• Unmount /home for system services
• Hide running processes from a webserver
• Examples: Firefox, Chrome, systemd

• Container runtime
• Use all the available namespacing capabilities
• Replace root filesystem with an application specific one
• Examples: Podman, Docker

• Combined with other technologies like seccomp and apparmor for security

13

Limitations

• Shared kernel
• Kernel vulnerabilities can break isolation
• Can’t run other operating systems or different kernel versions

• No replacement for VMs
• Increase the kernel’s attack surface

14

Summary

• Partition of system resources
• Building block for sandboxing and containers
• Shared kernel, no replacement for VMs

15

Containers in CTF

• Container escape?
• Not today :(

• Containers as a way to run challenges locally
• Containers as a way to run tools

16

Container terms

• Container runtime
• docker, podman

• Container image
• A filesystem image that can be used as basis for containers

• Container
• An instance of a container image with some additional configs and state

• Container orchestration
• Something manages (multiple) containers. docker compose, kubernetes

17

Running on non-linux

/shrug 1

1I failed to typeset the real thing in pandoc

18

docker vs podman

• Docker is the older and more popular runtime
• Requires a daemon running as root
• Requires root privileges to interact with
• Is what people expect you to run

• Podman is a new alternative
• No daemon, no root privileges
• Is what you should be using 90% of the time (on linux)
• CLI tries to be compatible. Just switch the binary name

19

Getting started

podman run nginx

• Loads the nginx container image
• Starts the container with a random name
• Prints logs, unless started with -d

20

Useful options

podman run -it \ # interactive with tty
mount directory into the container
-v $(pwd)/www:/usr/share/nginx/html \
-p 1337:80 \ # expose port 80 as 0.0.0.0:1337
--rm \ # delete the container after it exits
--name=kitctf \ # give it an explicit name
-e TEST=123 \ # Set environment variable

nginx:alpine # specify an image with a tag

21

Managing containers

• podman ps -a
• List all containers (-a include stopped containers)

• podman stop kitctf & podman start kitctf
• Manage created containers

• podman rm kitctf
• Delete containers once you are done

22

Working with running containers

• We can enter running containers
• podman exec -it kitctf bash

• We can copy files from and into containers
• podman cp kitctf:/some/file some-file

23

Building images

• Container images need to come from somewhere
• Basically just a tar archive with all the files in the container
• Easiest way to build images: Containerfile / Dockerfile

• File containing commands that should be executed to build the container
• podman build -t my-image-name . to build container in current working directory

• Sometimes events provide a Dockerfile but no image

24

Containerfile (née Dockerfile)

FROM ubuntu:22.04

RUN apt update && apt install -y python3 python3-pip

COPY ./python-app /opt/app
WORKDIR /opt/app

RUN pip install -r requirements.txt

CMD ["python3", "main.py"]

25

Managing images

• List images on your system
• podman images

• Pull an image from a remote registry
• podman pull ubuntu:20.04
• podman pull registry.example.com/base/challenge

• Delete a local image
• podman rmi ubuntu:20.04

26

Running multiple containers

• Lots of way to manage containers
• docker-compose / podman-compose is a popular choice

• docker-compose.yml defines which containers to run
• podman-compose up start all container
• podman-compose down stop & delete all containers

• ps, exec, cp also work with podman-compose

27

Minimal compose example

services:
python-app:

build: .

nginx:
image: nginx:alpine
volume:

- ./www:/usr/share/nginx/html
ports:

- 127.0.0.1:1337:80

28

Most important command

podman system prune
• Delete all unused resources
• 10s of GB of storage

29

Useful tips for CTF

• Debugging in containers
• Run your containers with --privileged --security-opt seccomp=unconfiend

to run gdb in container
• PID in container != PID outside of container. Be aware when attaching from the

outside
• Mount your local version into the container

• Allows easier changing / debugging of challenge files without rebuilding

30

