
KITCTF 02.03.2023 - CodeQL Workshop

Setup instructions: https://gh.io/nc-2023-setup

1

https://gh.io/nc-2023-setup

FROM code SELECT vulnerability

Why static analysis?
Static analysis: Finding problems in code without executing it.

⇒ Find vulnerabilities even in rarely executed code.

Why CodeQL?
Precisely model (vulnerability) patterns.

Extendable, open-source queries.

Powerful data flow analysis.

Reusable & shareable queries.

Scaling: Find bugs in 10s or 1000s of programs.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 2

Workshop Goals
Get to know CodeQL.

Write your first query.

Avoid common pitfalls.

Learn tips and tricks.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 3

Workshop Format
Interactive workshop!

We first explain concepts and for each concept we provide small exercises.

There can be multiple solutions for the same exercises.
This is expected!

If you have any questions, feel free to interrupt us and ask!

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 4

Checkpoint: Setup
Did you follow the setup instructions on https://gh.io/nc-2023-setup?

If something does not work, now is the time to fix it!

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 5

https://gh.io/nc-2023-setup

Introduction

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 6

What is CodeQL
CodeQL is ...

a static analysis tool.

a logic-based and object-oriented programming language.

a tool to turn code into data.

Allows us to use logic to reason about code as data.

Supports Java/Kotlin, C#, C/C++, JavaScript/TypeScript, Python, Go, Ruby, and
Swift (Beta).

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 7

What is a CodeQL Database?
Collection of facts about the code:

Abstract syntax tree + control flow graph + data flow + ...

Contains a copy of your source code.
⇒ everything needed is contained in the database.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 8

How to Get a Database I
Prebuilt databases:

Provided by GitHub.

Available via the REST API: https://docs.github.com/en/rest/code-scanning?
apiVersion=2022-11-28#get-a-codeql-database-for-a-repository

Or directly in the VS Code extension:

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 9

https://docs.github.com/en/rest/code-scanning?apiVersion=2022-11-28#get-a-codeql-database-for-a-repository

How to Get a Database II
Self-built databases:

Using codeql cli.

More information: https://docs.github.com/en/code-security/codeql-cli/using-
the-codeql-cli/creating-codeql-databases

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 10

https://docs.github.com/en/code-security/codeql-cli/using-the-codeql-cli/creating-codeql-databases

CodeQL Query Structure
A query has three parts:

from <type> variable1, <type> variable2, ... : define values we are
working on.

where <formula holds> : filter values.

select <alertLocation>, "message" : create an alert at the location using
the given message.
(this is basically SQL but written upside-down to enhance autocompletion!)

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 11

CodeQL Query Structure (continued)
A query file uses the .ql extension and contains a query. It can also contain
imports, classes, and predicates.

A query library uses the .qll extension and does not contain a query. It can also
contain imports, classes, and predicates.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 12

Example: CodeQL Query Structure
import java : imports the java query library; makes classes and predicates

available

from Class javaStringClass : from all elements that represent Java classes

where javaStringClass.hasQualifiedName("java.lang", "String") : only get
the class that represents the Java String class.

select javaStringClass, "This is the Java String class." : create an alert.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 13

Examples

select "Hello KITCTF"

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 14

Examples

from int year
where year = 2023
select "Hello KITCTF " + year

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 15

Examples

from string greeting, string target
where greeting = "Hello" and target = "everyone"
select greeting + " " + target + "!"

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 16

Examples

from Class javaStringClass
where javaStringClass.hasQualifiedName("java.lang", "String")
select javaStringClass, "This is the Java String class."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 17

Building Blocks

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 18

Building Blocks for Java
The following building blocks are specific to Java.

But the concepts are transferrable to the other languages supported (JavaScript,
Ruby, Go, C, and others) because what changes are mostly keywords.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 19

Program Elements
Represent named program elements:

Types (Type).

Methods (Method).

Constructors (Constructor).

Variables (Variable).

Common superclass: Element .

Helpful member predicates:
Element.contains(Element e) : Holds if this element transitively contains
e .

Element.hasName(string name) : Holds if this element has the name name .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 20

Program Elements: Variables
Variable represents variables in the Java sense:

Field represents a Java field.

LocalVariableDecl represents a local variable.

Parameter represents a parameter of a method or constructor.

Helpful member predicates:
VarAccess Variable.getAnAccess() : Gets an access to this variable.

Expr Variable.getAnAssignedValue() : Gets an expression that is assigned
to this variable.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 21

Program Elements: Types
Class Type represents different kinds of Java types:

PrimitiveType represents a primitive type: boolean , byte , char ,
double , float , int , long , short .

RefType represents a reference (non-primitive) type; it has several
subclasses:

Class represents a Java class.

Interface represents a Java interface.

Enum Type represents a Java enum type.

Array represents a Java array type.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 22

Program Elements: Types (Continued)
Helpful member predicates:

RefType.getAMethod : Gets a method declared in this type.

RefType.getASubtype : Gets a direct subtype of this type.

RefType.getASupertype : Gets a direct supertype of this type.

RefType.getAnAncestor : Gets a direct or indirect supertype of this type,
including itself.

RefType.hasQualifiedName(string package, string type) : Holds if this
type is declared in a specified package with the specified name.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 23

Program Elements: Methods
Method : Represents Java methods, for example, public void foo() {}

Helpful member predicates:
Method.hasName(string name) : holds if this method has the specified name.

Method.getAPossibleImplementation : get a method that could be called
when this method is called.

Method.getAReference : get a reference to an expression that invokes this
method.

MethodAccess : Represents an invocation of a method with a list of arguments;
example: foo()

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 24

Program Elements: Constructors
Constructor : Represents Java constructors, for example, public Bar() {}

ConstructorCall : Represents constructor calls via new , this() , super() .

new Bar(); // <-- constructor call

public Bar() {
 this("foo"); // <-- constructor call
}
public Bar(String string) {}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 25

Program Elements: Calls and Callables
Callable : Common super class for Method and Constructor .

Call : Common super class for MethodAccess and ConstructorCall .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 26

Exercises: Program Elements
Exercise 1: Find all variables named "pathAdjusted" of type String.
Hints:

Get the type of a variable using the getType() method.

Check if a type is of type String by using instanceof TypeString

Exercise 2: Find all methods that have a parameter of type String and are in a sub
package of "seclab.testprojects.jxpathvuln."
Hint: Match the start of a String like this:
matches("seclab.testprojects.jxpathvuln.%")

(Optional) Exercise 3: Find all static fields whose name starts with "ERROR".

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 27

Abstract Syntax Tree Nodes
Abstract syntax trees (ASTs) represent the structure of program code.

Java's AST has two types of nodes:
Statements: Modeled via the Stmt CodeQL class.

Expressions: Modeled via the Expr CodeQL class.

Full list: https://codeql.github.com/docs/codeql-language-guides/abstract-syntax-tree-
classes-for-working-with-java-programs/

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 28

https://codeql.github.com/docs/codeql-language-guides/abstract-syntax-tree-classes-for-working-with-java-programs/

Abstract Syntax Tree Nodes (Continued)
Helpful member predicates:

Expr.getAChildExpr returns a sub-expression of a given expression.

Stmt.getAChild returns a statement or expression that is nested directly
inside a given statement.

Expr.getParent and Stmt.getParent return the parent node of an AST
node.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 29

Abstract Syntax Tree Nodes: Statements

Statement syntax CodeQL class

Expr ; ExprStmt

{ Stmt ... } BlockStmt

if (Expr) Stmt else IfStmt

while (Expr) Stmt WhileStmt

return Expr ; ReturnStmt

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 30

https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$ExprStmt.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$BlockStmt.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$IfStmt.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$WhileStmt.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Statement.qll/type.Statement$ReturnStmt.html

Abstract Syntax Tree Nodes: Expressions

Expression syntax CodeQL class

Literals: true , 23 , "Hello" , ...
BooleanLiteral, IntegerLiteral,
StringLiteral, ...

Unary expressions: Expr++ , --Expr , !Expr ,
...

PostIncExpr, PreDecExpr,
LogNotExpr, ...

Binary expressions: Expr * Expr , Expr &&
Expr , Expr < Expr , ...

MulExpr, AndLogicalExpr, LTExpr,
...

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 31

https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$BooleanLiteral.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$IntegerLiteral.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$StringLiteral.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$PostIncExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$PreDecExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$LogNotExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$MulExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$AndLogicalExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$LTExpr.html

Abstract Syntax Tree Nodes: Expressions
(Continued)

Expression syntax CodeQL class

Assignment expressions: Expr = Expr ,
Expr += Expr , ...

AssignExpr, AssignAddExpr, ...

Accesses: x , obj.field , array[0] ,
obj.method() , ...

VarAccess, FieldAccess, ArrayAccess,
MethodAccess, ...

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 32

https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$AssignExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$AssignAddExpr.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$VarAccess.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$FieldAccess.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$ArrayAccess.html
https://codeql.github.com/codeql-standard-libraries/java/semmle/code/java/Expr.qll/type.Expr$MethodAccess.html

Exercises: Abstract Syntax Tree Nodes
Exercise 4: Find all accesses to methods with name getValue that do not take place
inside callables with names starting with get .

Exercise 5: Find all calls to getValue that use a constant string as the first argument.
Hints:

Use StringLiteral to check for instance of constant strings.

CodeQL indices are zero-based.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 33

Predicates
They establish a relationship between its parameters by means of a formula.

A predicate represents the set of tuples that satisfy its formula.
A database table if you will.

A predicate holds when its formula evaluates to true on the input.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 34

Predicates (Continued)
Example:

predicate isSmallEvenNumber(int i) {
 i % 2 = 0 and // is even?
 i in [1..10] // is small?
}

Does isSmallEvenNumber(12) hold? No, because 12 in [1..10] is false.

Does isSmallEvenNumber(10) hold? Yes, because 10 % 2 = 0 is true and 10
in [1..10] is true.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 35

Predicates (Continued 2)
They are similar to functions but the analogy will become weird if you push it too
much.

Since there is no state, just a formula, you can evaluate anything in QL and get the
results.

This is an incredible feature and should be used extensively to
understand the bits and bolts of more complex queries.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 36

Built-in Predicates
any() : a predicate that always holds, "true".

none() : a predicate that never holds, "false".

string.matches : holds when the receiver matches the argument in the same way
as the LIKE operator in SQL. _ matches a single character and % matches any
sequence of characters.

string.toLowerCase : returns the receiver with all letters converted to lower case.

string.regexpMatch : holds when the receiver matches the argument as a regex.

Full list: https://codeql.github.com/docs/ql-language-reference/ql-language-
specification/#built-ins

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 37

https://codeql.github.com/docs/ql-language-reference/ql-language-specification/#built-ins

Classes
Describe a set of values that share a characteristic.

Every class needs a super type.

Characteristic predicate determines which values are part of the class.

Member predicates allow adding useful "methods".

class [ClassName] extends [SuperType] {
 [ClassName]() { // <- characteristic predicate
 // constrain the values that [ClassName] contains
 }
 predicate memberPredicate() {
 }
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 38

Classes: Example
Characteristic: All calls to the methods named exec .

Calls to methods are represented by MethodAccess .
⇒ super type is MethodAccess

"Take all calls to methods, but only those named exec . Give those values the
name ExecMethodAccess "

class ExecMethodAccess extends MethodAccess {
 ExecMethodAccess() { // <- characteristic predicate
 this.getMethod().hasName("exec")
 }
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 39

Explicit Type Checks
instanceof : Used to check whether a value is of a certain type.

Using instanceof is completely natural in CodeQL.

from MethodAccess ma
where ma instanceof ExecMethodAccess
select ma, "call to exec"

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 40

Casts
Allow constraining expressions to a type.

Postfix style cast: x.(Foo)

Prefix style cast: ((Foo)x)

x is now constrained to be of type Foo .

Can use both styles, but prefix casts are rarely used.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 41

Casts: Java vs. CodeQL
Casts in Java can throw an error/exception.

Casts in CodeQL do not throw an error/exception.
⇒ Allow us to chain predicates easily.

predicate foo(MethodAccess ma) {
 ma.(ExecMethodAccess).cmdArgument().(AddExpr).
 getRightOperand().getType().(RefType).hasQualifiedName("java.lang", "String")
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 42

Quantifiers
There are three of them (exists , forall , and forex) but the most used is
exists .

exists(<variable declarations> | <formula>)

Reads as "there is an X such as".

Holds if the variables declared satisfy the formula.

Allows us to introduce temporary variables.

More information: https://codeql.github.com/docs/ql-language-
reference/formulas/#quantified-formulas

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 43

https://codeql.github.com/docs/ql-language-reference/formulas/#quantified-formulas

Data Flow Analysis

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 44

Data Flow Analysis
Allows us to reason about the propagation of data.

Allows us to answer questions like these:
Does this expression reach X?

Where does this expression reach in the program?

Fundamental in more complex queries.

More Information: https://codeql.github.com/docs/codeql-language-guides/analyzing-
data-flow-in-java/

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 45

https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-java/

Data Flow Analysis: Flavors
Local

Follows propagation within a single function.

Precise and relatively cheap.

DataFlow::localFlow , DataFlow::localExprFlow

Global
Follows propagation across functions.

Less precise and computationally expensive.

DataFlow::Configuration , Configuration::hasFlow

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 46

AST Nodes vs. Data Flow Nodes
AST nodes reflect the syntactic structure of the program.

Classes: Expr , MethodAccess , VarAccess , ...

Data flow nodes model the way data flows through the program at runtime.

Nodes in the data flow graph represent semantic elements that carry values at
runtime.

Class: DataFlow::Node

We often translate between AST and data flow nodes:
Expr DataFlow::Node.asExpr() : Gets the expression corresponding to this

node, if any.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 47

Local Data Flow Analysis
Follows propagation within a single function.

Import semmle.code.java.dataflow.DataFlow and then use
DataFlow::localExprFlow .

DataFlow::localExprFlow(Expr e1, Expr e2) : holds if there is flow from e1 to
e2 .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 48

Exercises: Local Data Flow
Exercise 6: The query from exercise 5 found calls like this getValue("string") , but
does not find constructs like this:

String pathSelector = "selector";
getValue(pathSelector);

Hints:

import semmle.code.java.dataflow.DataFlow

Use DataFlow::localExprFlow to track the flow of string literals to getValue .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 49

Global Data Flow Analysis
Follows propagation across functions.

To make the problem tractable we need to define a source and a sink.

To use, import semmle.code.java.dataflow.DataFlow and extend
DataFlow::Configuration .

Override Configuration::isSource(DataFlow::Node src)

Override Configuration::isSink(DataFlow::Node sink)

Configuration::hasFlow(DataFlow::Node src, DataFlow::Node sink) :
holds if data may flow from src to sink for this configuration.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 50

Global Data Flow Analysis: Example
import java
import semmle.code.java.dataflow.DataFlow
import semmle.code.java.dataflow.FlowSources

class UserControlledPathConfiguration extends DataFlow::Configuration {
 UserControlledPathConfiguration() { this = "UserControlledPathConfiguration" }

 override predicate isSource(DataFlow::Node node) { node instanceof RemoteFlowSource }

 override predicate isSink(DataFlow::Node sink) {
 exists(MethodAccess ma |
 ma.getMethod().hasQualifiedName("java.nio.file", "Path", "of") and
 ma.getAnArgument() = sink.asExpr()
)
 }
}

from DataFlow::Node source, DataFlow::Node sink, UserControlledPathConfiguration cfg
where cfg.hasFlow(source, sink)
select sink, "The location of this path depends on user-controlled input."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 51

Data Flow Analysis vs. Taint Tracking
Data flow:

Value is preserved at each step.

In x = z; y = x + 1; , data will flow from z to x but not to y .

x + 1 does not preserve the value.

Taint Tracking
Value doesn't have to be preserved at each step.

Being influenced or tainted is enough.

In x = z; y = x + 1; , data will flow from z to x and x will taint y .

Taint tracking is an extension of data flow and includes steps that not necessarily
preserve the data value.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 52

Taint Tracking: Flavors
Local

Follows taint within a single function.

Precise and relatively cheap.

TaintTracking::localTaint , DataFlow::localExprTaint

Global
Follows taint across functions.

Less precise and computationally expensive.

TaintTracking::Configuration , Configuration::hasFlow

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 53

Real World

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 54

Apache Commons JXPath
Apache Commons JXPath (https://github.com/apache/commons-jxpath):

A Java-based implementation of XPath 1.0.

CVE-2022-41852:
Those using JXPath to interpret untrusted XPath expressions may be
vulnerable to a remote code execution attack. All JXPathContext class
functions processing a XPath string are vulnerable except compile() and
compilePath() function.

CVE has been rejected, because "Input to JXPath is expected to be administrator
controlled and therefore trusted."

Question: Is input really always trusted? Spoiler: No (if you live in reality)!

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 55

https://github.com/apache/commons-jxpath
https://github.com/advisories/GHSA-wrx5-rp7m-mm49

Finding CVE-2022-41852 Using CodeQL
CVE-2022-41852:

Those using JXPath to interpret untrusted XPath expressions may be
vulnerable to a remote code execution attack. All JXPathContext class
functions processing a XPath string are vulnerable except compile() and
compilePath() function.

⇒ perfect fit for taint-tracking analysis.

Source: Any untrusted input.

Sink: Any JXPathContext function that takes a XPath string except compile()
and compilePath .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 56

Modeling the Source
Exercise 7:

Find all nodes that are sources of untrusted data.

Hint: semmle.code.java.dataflow.FlowSources .

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 57

Modeling the Source: Solution
Solution:

semmle.code.java.dataflow.FlowSources defines various flow sources for
taint tracking.

RemoteFlowSource : Represents a data flow source of remote user input.

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.dataflow.DataFlow

predicate isSource(DataFlow::Node source) {
 source instanceof RemoteFlowSource
}

That's everything!
KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 58

Modeling the Sink
Exercise 8:

Sink: Any JXPathContext function that takes a XPath string except
compile() and compilePath .

Find all calls to this sink.

Hint: Looking at the source code we know that the following functions are
vulnerable: createPath , createPathAndSetValue , getPointer ,
getValue , iterate , iteratePointers , removeAll , removePath ,
selectNodes , selectSingleNode , setValue

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 59

https://github.com/apache/commons-jxpath/blob/db457cfd3a0cb45a61030ab2d728e080035baef6/src/main/java/org/apache/commons/jxpath/JXPathContext.java

Modeling the Sink: Solution
Solution:

The following functions are vulnerable: createPath , getPointer ,
createPathAndSetValue , getValue , iterate , iteratePointers ,
removeAll , removePath , selectNodes , selectSingleNode , setValue

predicate isSink(DataFlow::Node sink) {
 exists(MethodAccess ma |
 ma.getMethod()
 .hasQualifiedName("org.apache.commons.jxpath", "JXPathContext",
 [
 "createPath", "createPathAndSetValue", "getPointer", "getValue", "iterate",
 "iteratePointers", "removeAll", "removePath", "selectNodes", "selectSingleNode",
 "setValue"
]) and
 ma.getArgument(0) = sink.asExpr()
)
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 60

Putting Everything Together
Exercise 9:

Define a taint-tracking configuration with the source and sink we just defined.

Hint: Type "taint" in your IDE and hit auto-complete to generate boilerplate for
a taint-tracking configuration.

Run it!

You should find 1 result.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 61

Putting Everything Together: Solution
Solution:

import java
import semmle.code.java.dataflow.TaintTracking
import semmle.code.java.dataflow.FlowSources

class JXPathInjectionTracking extends TaintTracking::Configuration {
 JXPathInjectionTracking() { this = "JXPathInjectionTracking" }

 override predicate isSource(DataFlow::Node source) { source instanceof RemoteFlowSource }

 override predicate isSink(DataFlow::Node sink) {
 exists(MethodAccess ma |
 ma.getMethod()
 .hasQualifiedName("org.apache.commons.jxpath", "JXPathContext",
 ["createPath", "createPathAndSetValue", "getPointer", "getValue", "iterate",
 "iteratePointers", "removeAll", "removePath", "selectNodes", "selectSingleNode", "setValue"]) and
 ma.getArgument(0) = sink.asExpr()
)
 }
}

from JXPathInjectionTracking cfg, DataFlow::Node src, DataFlow::Node sink
where cfg.hasFlow(src, sink)
select sink, src, sink, "User-controlled data in XPath expression can lead to RCE."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 62

Putting Everything Together: A Better Solution
With the current solution we know that data flows from a source to a sink.

What we really want is to see the actual steps the data takes!

⇒ we want a path-problem.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 63

Putting Everything Together: Path-problem
Solution

/**
* // CHANGED: Add this, so CodeQL/the VS Code extension knows to interpret the results as a path.
* @kind path-problem
*/

import java
import semmle.code.java.dataflow.TaintTracking
import semmle.code.java.dataflow.FlowSources
// CHANGED: Add this, so data flow queries "generate" results as a path.
import DataFlow::PathGraph

class JXPathInjectionTracking extends TaintTracking::Configuration {
 // unchanged [...]
}

// CHANGED: Instead of `DataFlow::Node`, we have to use `DataFlow::PathNode`.
from JXPathInjectionTracking cfg, DataFlow::PathNode src, DataFlow::PathNode sink
// CHANGED: Instead of `hasFlow`, we have to use `hasFlowPath`.
where cfg.hasFlowPath(src, sink)
select sink, src, sink, "User-controlled data in XPath expression can lead to RCE."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 64

Putting Everything Together: Path-problem
Solution

We can follow the flow through the source code by clicking on any of the steps:

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 65

Further Steps

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 66

GitHub Security Lab
GitHub Security Lab’s mission is to inspire and enable the community to secure
the open source software we all depend on.

What they do:
Find vulnerabilities (Google Chrome, Android, Ubuntu, ...)

Share research through proof-of-concepts, articles, tutorials, conferences and
community events.

Scale security research by performing Variants Analysis for open source
projects with CodeQL.

Run a bug bounty program for CodeQL queries

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 67

CodeQL Bug Bounty
Write a new CodeQL query for an unmodeled vulnerability class.

Awards of up to $6,000 can be granted.

Use CodeQL query to find and fix vulnerabilities.

Awards of up to $7,800 for multiple critical CVEs can be granted.
More information: https://securitylab.github.com/bounties/

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 68

https://securitylab.github.com/bounties/

Tips and Tricks
Some useful tips and tricks for writing and debugging CodeQL queries and for using
CodeQL at scale.

GitHub Copilot

AST Viewer

GitHub Codesearch

Multi-repository variant analysis (MRVA)

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 69

GitHub Copilot
GitHub Copilot helps you write software faster by using machine learning to generate
code suggestions. - It can even help you write CodeQL queries!
It needs little context to get started and it works well as a helpful assistant.

Demo

Our context:

import java

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 70

https://github.com/features/copilot

AST Viewer
The AST Viewer is a tool that allows you to view the abstract syntax tree (AST) of a
piece of code. It can be used to understand how the CodeQL parser interprets a piece
of code.

Demo: Right click "CodeQL: View AST" in result from previous query.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 71

GitHub Codesearch
By enabling the improved GitHub Codesearch at https://cs.github.com you can search
for code across all of GitHub. It allows much more powerful queries than the previously
existing search functionality on GitHub (you can even use Regex).

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 72

https://cs.github.com/
https://cs.github.com/

The Codesearch startpage

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 73

Multi-repository variant analysis
Multi-repository variant analysis (MRVA) is a feature that allows you to run CodeQL
queries across multiple repositories. E.g. you can use Codesearch to identify specific
sinks in your organization or OSS projects and then you can leverage MRVA to find all
the places where remote data flows into these sources.

MRVA is publicly available for testing since yesterday!

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 74

https://github.blog/2023-03-09-multi-repository-variant-analysis-a-powerful-new-way-to-perform-security-research-across-github/

MRVA results inside of VS Code

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 75

Summary
Thank YOU for attending today and we hope you learned something.

You now know the basics (and more) of CodeQL and modeled a real-world CVE.

Your skills are transferable to the other languages supported because what
changes are only a few keywords/concepts.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 76

Resources
QL tutorials

CodeQL language guides

Other CodeQL workshops

GitHub Advanced Security material

QL language reference

Overview over all CodeQL Java classes

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 77

https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/
https://codeql.github.com/docs/codeql-language-guides/
https://github.com/githubuniverseworkshops/codeql
https://github.com/advanced-security/advanced-security-material/blob/main/advanced-security-material.md
https://codeql.github.com/docs/ql-language-reference/
https://codeql.github.com/codeql-standard-libraries/java/index.html

Questions? Concerns? Comments?
Ping @intrigus in the GitHub Security Lab Slack.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 78

https://gh.io/securitylabslack

Join the GitHub Security Lab Slack!
For all questions regarding:

CodeQL

Bounties

Multi-repository variant analysis

Join the GitHub Security Lab Slack by following this link: gh.io/securitylabslack.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 79

https://gh.io/securitylabslack

Backup

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 80

Creating a Database
First, verify building your code using your usual build system:
make/cmake/gradle/go/...

Everything works?

Compile your code again using the CodeQL cli tools.

The cli intercepts the build command and extracts the necessary facts from your
code while compiling.

Cli must intercept the actual compile command.
⇒ can not use incremental builds or caching.
(Only code that has been compiled in a codeql command will be included into the
database)

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 81

Example: Custom Compile Command
Toy project with a single file.

Normal command: javac Example.java

Building database command: codeql database create the_database_name --
command 'javac Example.java' --language Java

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 82

Example: Analyzing Multiple Projects Together
You have a project A and a dependency project B and have created separate
databases for them.

When analyzing project A, CodeQL treats calls to methods in B as a black box!
⇒ this is a big problem for data flow analysis.

Solution: Just build both projects in the same codeql command.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 83

Example: Analyzing Multiple Projects Together
(continued)

Before: codeql database create projectA --command '[buildCommandA]' --
language Java

and codeql database create projectB --command '[buildCommandB]' --
language Java

After: codeql database create projectAB --command '[buildCommandA] &&
[buildCommandB]' --language Java

⇒ the database projectAB now also contains the code of B and so data flow
analysis doesn't stop at function boundaries

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 84

Example: Some gradle Project Working Out of
the Box

No need to provide an explicit build command.

CodeQL provides an "autobuilder":
detects the build system and executes an appropriate command.

Instead of
codeql database create projectA --command 'mvn compile' --language

Java

you could also just run
codeql database create projectA --language Java

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 85

Example: Other Languages
Python, Javascript/Typescript, and Ruby:
No need for a compilation command.
$ codeql database create $DB_NAME --language {Python|Javascript|Ruby}

C#:
$ codeql database create $DB_NAME --language csharp --command

'[buildCommand]

Go:
$ codeql database create $DB_NAME --language go --command

'[buildCommand]

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 86

Predicates with Result
Predicates can also have a result: replace predicate with the result type.

"Return" a value by expressing a relation between result and the other
variables.

Example:

int getSuccessor(int i) {
 result = i + 1 and
 i in [1 .. 9]
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 87

Predicates: Examples

// (BlockStmt): is `block` an empty block?
predicate isEmpty(BlockStmt block) {
 block.getNumStmt() = 0
}

// (Expr, Call): get the first argument of a function call.
Expr getFirstArg(Call call) {
 result = call.getArgument(0)
}

// (Expr, Call): same as before but expressed differently.
predicate getFirstArg(Expr expr, Call call) {
 expr = call.getArgument(0)
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 88

Predicates != Functions

// (Call, Expr): Get all Call’s that have `expr` as its first argument.
Call getCallFor(Expr expr) {
 expr = result.getArgument(0)
}

// (Call, Expr): Get all Calls that have `expr` as its first argument.
predicate getCallFor(Call call, Expr firstArg) {
 firstArg = call.getArgument(0)
}

// (int, Call, Expr): Get the index of `arg` when called as an argument
// of `call`.
int getArgIndex(Call call, Expr arg) {
 arg = call.getArgument(result)
}

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 89

Transitive Closures
Apply the same predicate zero or more times in a transitive way.

It allows you to express relationships between elements of the same set that are
"connected" by means of a relationship/predicate.

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 90

Transitive Closures: Example
Class class.getASupertype() : Gets a super type of class . Elements are

related by whether they are super types of each other.

c.getASupertype*().hasQualifiedName("java.io", "Reader") :
Gets all classes that have java.io.Reader as direct super type.

c.getASupertype+().hasQualifiedName("java.io", "Reader") :
Gets all classes that have java.io.Reader as direct or indirect super type
(excluding Reader itself).

c.getASupertype*().hasQualifiedName("java.io", "Reader") :
Gets all classes that have java.io.Reader as direct or indirect super type
(including Reader itself).

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 91

Equality
Equality can be a bit surprising:

There is a difference between A != B and not A = B !

A = B holds if there is a pair of values — one from A and one from B — that
are the same. In other words, A and B have at least one value in common.

A != B holds if there is a pair of values (one from A and one from B) that are
different.

not A = B holds if it is not the case that there is a pair of values that are the
same. In other words, A and B have no values in common.

More information: https://codeql.github.com/docs/ql-language-
reference/formulas/#equality

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 92

https://codeql.github.com/docs/ql-language-reference/formulas/#equality

Equality: Example
No difference between A != B and not A = B when A and B contain a single
value

0 = 1 does not hold, 0 != 1 holds and not 0 = 1 holds.

Now we compare 1 and [1..2]
1 != [1..2] holds, because 1 != 2 .

1 = [1..2] holds, because 1 = 1 .

not 1 = [1..2] doesn’t hold, because there is a common value (1).

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 93

Data Flow/Taint Tracking: Limitations
Flow/taint can not propagate through external functions.

String result someExternalFunction(taintedStringValue);

Is result tainted? impossible to know without source code!

Many important external functions are from the Java runtime.
⇒ have to define manual models

"If parameter foo is tainted, then the result of the call to bar should also be
considered tainted."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 94

Query Metadata
Add header comment /** ... */ at beginning of QL file to provide metadata:

@name : a descriptive name of the query

@description : a short description of what the query does

@id : a unique identifier for the query

@kind : how to display results, e.g. @kind problem for alert queries

More information: https://codeql.github.com/docs/writing-codeql-queries/metadata-for-
codeql-queries/

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 95

https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/

Path Problems
Knowing that data flows from a source to a sink is good.

But seeing the actual flow path is better.

Path queries require certain metadata, query predicates, and select statement
structures.

/**
 * @kind path-problem
 */
import DataFlow::PathGraph
...

from Configuration config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select <alert location>, source, sink, "<message>"

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 96

Path Problems: Example
/**
 * @kind path-problem
 */

import java
import semmle.code.java.dataflow.DataFlow
import DataFlow::PathGraph
...

from JXPathInjectionTracking config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "User-controlled data in XPath expression can lead to RCE."

KITCTF 02.03.2023 - CodeQL Workshop | Simon Gerst 97

