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Lattices - Formal Definition

e Generating Vectors {vi,..., vy} C R"
o Lattice A={>_",xivi | x; € Z}



Lattices - Discret

@ There is smallest distance € > 0 between Points



Lattices - Discret

@ There is smallest distance € > 0 between Points
o Counterexample: v; = (1), v» = (v/2) € R?



Lattices - Discret

@ There is smallest distance € > 0 between Points
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Lattices - Discret

@ There is smallest distance ¢ > 0 between Points
o Counterexample: v; = (1), v» = (v/2) € R?
® ap=lap2—ap-1], a0 =v1, a1 = v
0 a a» a3 Vi V2 X
@ Converges to 0
@ No € exists
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Lattices - Properties

Basis B = {bx, ..., bg} C R" linear independent
Lattice A = {27:1 xib; | x; € Z}

Similar to vector subspace

Each point unique combination of basis vectors

Rank of lattice d < n, full rank d = n

Change of basis Matrix B

But: for given Lattice A, cannot take any d linear independent
vectors {by, ..., bg} C A

6—0—0—’—0—0—0—0—) X
Dual lattice A* ={y e R" | Vv e A: (v,y) € Z}
Closed, countable, bounded subset S — L N S finite

A1: shortest distance between any two lattic points



Closest Vector Problem (CVP) and Shortest Vector

Problem (SVP)

Given a lattice basis B, find:
@ SVP: the shortest nonzero lattice point

@ CVP: the closest lattice point for a given point in R"



SVP - Example




SVP - Example
1 2 3 1
b= (2] o= 0|, bs=|1],205—2bp—b,= |0
2 -1 0.5 1




LLL Algorithm

Named after creators Lenstra, Lenstra, Lovasz
Approximates SVP
Tries to calculate short orthogonal basis

Adaptation of Gram-Schmidt algorithm



Gram-Schmidt Algorithm

b3 by

e Orthogonalize {by, bo} to {b], b5}

@ Normalize



Gram-Schmidt - On Lattice

o Ifu¢Z, then by ¢ L

@ Normalized Vector Generally not in L



LLL Algorithm - Goal

LLL reduced latice basis {b1, ..., by} with {b], ..., b}} from
Gram-Schmidt
(b, bf")

: ) 1
o ViFEk:ujy= (b 57) <3

o Vit ||b,y + uia bt > ollbf|P (2<6<1)
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LLL Algorithm - Goal

LLL reduced latice basis {b1, ..., by} with {b], ..., b}} from
Gram-Schmidt

) by,
o ViFEk:ujy= ébib*;<%

o Vit ||b,y + uia bt > ollbf|P (2<6<1)

@ Swapping b; with bj; 1 — bt = bl 1 + ujiy1b}

I,new

o Condition ensures not much smaller base when swapping



LLL Algorithm - Pseudocode

@ Step 1: Gram-Schmidt with rounded u;

@ Step 2: If second condition not satisfied for index 7, swap b;
and b;jyq and return to step 1



Learning Parity with Noise

Find s € {0,1}"

Given pairs (a;, bj = (a;,s) + e, mod 2)
a; € {0,1}" uniformly chosen

e; = 1 with probability € € (0,1)



Learning Parity with Noise

e Find s € {0,1}"

e Given pairs (a;, b; = (a;,s) + ¢ mod 2)

e a; € {0,1}" uniformly chosen

e ¢; = 1 with probability € € (0,1)

o Can be written b = As + e, with
al el by
ay & by

A - . ) e - . ) b — .

a; €m bm



Learning Parity with Noise - Example

1sp+0s;1 +1so =1 mod 2
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Learning Parity with Noise - Example

1sp+0s;1 +1so =1 mod 2
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Learning Parity with Noise - Example

1s)+0s;1+1sp, =1 mod 2
1s)+1s1+0s, =0 mod 2
1sp+1s1+1so =1 mod 2

Other Solution:



Gaussian Elimination

Look at only calculating first bit of the secret
e Use n equations with a; adding to (1, 0, ..., 0)
@ Add equations



Gaussian Elimination

Example with € =

1s9+0s1 +1sp =1
+

1sp+1s1 +0sp =0
+

lss+1s1+1sp =1

SOZO

mod 2

mod 2

mod 2

mod 2



Gaussian Elimination

: _1
Example with € = 7

1s)+0s;1+1sp, =1 mod 2
+

1s)+1s1+0s, =0 mod 2
+

1ss+1s1+1s, =1 mod 2

so=0 mod?2

Chance of Success:

3\ 3 1\? 3
e Z) .2 =0562
(4> —|—3*<4> 2 0.5625



Learning with Errors (LWE)

@ Generalization of Learning Parity with Noise
o Zg=1{0,1,...,9— 1} Instead of {0,1}
o Error ¢; € Zg chosen from distribution x



Learning with Errors (LWE)

Generalization of Learning Parity with Noise
o Zg=1{0,1,...,9— 1} Instead of {0,1}
o Error ¢; € Zg chosen from distribution x

Given pairs (a;, (aj,s) + & mod q)

aj € Zgq uniformly chosen

@ Recover s € Zg



Error Distribution W,

@ Used for error distribution
e Sample from N/(0, %)

@ Modulo 1 to value in [0,1)

@ Multiply with p and round to next integer

@ Same as dividing [0,1) in {0, 1 5 p, ce ijl}



Error Distribution W, - Example

Probability

Probability

VY, for p = 127 with o = 0.05 (left) and o = 0.1 (right)
Similar to discret gaussian distribution with standard deviation ap

'Source https://cims.nyu.edu/ regev/papers/qcrypto.pdf
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@ Use LWE oracle to solve CVP

@ Given lattice A and point x € R” close to lattice point v € A
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Reduction LWE to CVP

Use LWE oracle to solve CVP

Given lattice A and point x € R” close to lattice point v € A
Given samples y; on dual lattice A*

Use the samples to create LWE, v as secret

Interprete x as v with error e

a; = (B*)ly;, representation in base of A*

(a; mod g, b; = (y;,x) mod q)



Reduction LWE to CVP

® bj = (yi,x) = (yi,v) + (yi,e) mod q



Reduction LWE to CVP

® bj = (yi,x) = (yi,v) + (yi,e) mod q

o Change of basis matrix BT = (B*)™!
o (y;,v) = ((B*)ty;,B~tv) = (a;,s) mod q



Reduction LWE to CVP

® bj = (yi,x) = (yi,v) + (yi,e) mod q

o Change of basis matrix BT = (B*)™!
o (y;,v) = ((B*)ty;,B~tv) = (a;,s) mod q
o With a; € Z", s =B lv e Z"



Simple Encryption

Keygen
o Secret s € Zg
e Public pairs (a;, bi = (aj,s) + &)
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Keygen
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e Public pairs (a;, bi = (aj,s) + &)
Encrypt bit b
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Simple Encryption

Keygen
o Secret s € Zg
e Public pairs (a;, bj = (aj,s) + €;)
Encrypt bit b
@ Choose indices J
® Enc(b) = (D_icsai, Dojeybi+b-q/2) € Zyx Ly
Decrypt (c1, c2)
o calculate e =) ;. bi — > i j{ai,s) = 2 — (a1, 5)
e b=1if e closer to q/2 than 0 mod q

@ Idea: sum of error terms stil small (<< g/2)
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CRYSTALS Kyber - More practical Encryption

Ring LWE
o R = Z,[X]/(X9 + 1) instead of Z,
@ Polynom reduced by X9 +1
o Coefficients in Zg
o X2+1-X+0€e L[X]/(X3+1)

@ Can store multiple bits in one polynom
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CRYSTALS Kyber - More practical Encryption

Keygen

@ Secret s € R”

@ Public Key Ac R™" t=As+ec R"
Encryption of m

@ choose e1,r € R",ep € R

o u' =rTA+ ¢

ov=rTt+e+qg/2-m

o c=(u",v)



CRYSTALS Kyber - More practical Encryption

Keygen
@ Secret s € R”
@ Public Key Ac R™" t=As+ec R"
Encryption of m
@ choose e1,r € R",ep € R
o u' =rTA+ ¢
ov=rTt+e+qg/2-m
o c=(u",v)
Decryption of ¢ = (u”, v)

(] W:V—UTS

round(w)

e m=
q/2




CRYSTALS Kyber - More practical Encryption

v—u's=rTt+e+q/2-m—(r"A+e)s
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CRYSTALS Kyber - More practical Encryption

v—u's=rT"t+e+q/2-m—(rTA+e)s

:rTAs+rTe+eg+q/2-m—rTAs+e15
:q/2-m+rTe—|—e2+e15
=q/2- m+ small



CRYSTALS Kyber - More practical Encryption

v—u's=rT"t+e+q/2-m—(rTA+e)s

:rTAs+rTe+eg+q/2-m—rTAs+e15
:q/2-m+rTe—|—e2+e15
=q/2- m+ small

= Rounded to m- q/2



e Signatures (Dilithium)

@ Fully Homomorphic Encryption



