
Lattices and Hard Problems

Robert Brede

February 23, 2023

Outline

Lattices

Shortest Vector Problem, Closest Vector Problem

LLL - Algorithm

Learning With Errors

Learning Parity with Noise
Reduction LWE to CVP
Usage of LWE

Lattices - Definition

x

y

v1

v2

Generating Vectors v1, v2

Lattices - Definition

x

y

v1

v2

2v1

v1 + v2

−v1

Linear combinations with integer coefficients

Lattices - Definition

x

y

v1

v2

Lattice spanned by v1 and v2

Lattices - Formal Definition

Generating Vectors {v1, ..., vm} ⊂ Rn

Lattice Λ = {
∑m

i=1 xivi | xi ∈ Z}

Lattices - Discret

There is smallest distance ϵ > 0 between Points

Counterexample: v1 = (1), v2 = (
√
2) ∈ R1

an = |an−2 − an−1|, a0 = v1, a1 = v2

x
0 v2v1a2 a3a4

Converges to 0

No ϵ exists

Lattices - Discret

There is smallest distance ϵ > 0 between Points

Counterexample: v1 = (1), v2 = (
√
2) ∈ R1

an = |an−2 − an−1|, a0 = v1, a1 = v2

x
0 v2v1a2 a3a4

Converges to 0

No ϵ exists

Lattices - Discret

There is smallest distance ϵ > 0 between Points

Counterexample: v1 = (1), v2 = (
√
2) ∈ R1

an = |an−2 − an−1|, a0 = v1, a1 = v2

x
0 v2v1a2 a3a4

Converges to 0

No ϵ exists

Lattices - Discret

There is smallest distance ϵ > 0 between Points

Counterexample: v1 = (1), v2 = (
√
2) ∈ R1

an = |an−2 − an−1|, a0 = v1, a1 = v2

x
0 v2v1a2 a3a4

Converges to 0

No ϵ exists

Lattices - Properties

Basis B = {b1, ..., bd} ⊂ Rn linear independent

Lattice Λ =
{∑d

i=1 xibi | xi ∈ Z
}

Similar to vector subspace

Each point unique combination of basis vectors
Rank of lattice d ≤ n, full rank d = n
Change of basis Matrix B
But: for given Lattice Λ, cannot take any d linear independent
vectors {b1, ..., bd} ⊂ Λ

x
0

Dual lattice Λ∗ = {y ∈ Rn | ∀v ∈ Λ : ⟨v , y⟩ ∈ Z}
Closed, countable, bounded subset S → L ∩ S finite

λ1: shortest distance between any two lattic points

Lattices - Properties

Basis B = {b1, ..., bd} ⊂ Rn linear independent

Lattice Λ =
{∑d

i=1 xibi | xi ∈ Z
}

Similar to vector subspace

Each point unique combination of basis vectors
Rank of lattice d ≤ n, full rank d = n
Change of basis Matrix B
But: for given Lattice Λ, cannot take any d linear independent
vectors {b1, ..., bd} ⊂ Λ

x
0

Dual lattice Λ∗ = {y ∈ Rn | ∀v ∈ Λ : ⟨v , y⟩ ∈ Z}
Closed, countable, bounded subset S → L ∩ S finite

λ1: shortest distance between any two lattic points

Lattices - Properties

Basis B = {b1, ..., bd} ⊂ Rn linear independent

Lattice Λ =
{∑d

i=1 xibi | xi ∈ Z
}

Similar to vector subspace

Each point unique combination of basis vectors
Rank of lattice d ≤ n, full rank d = n
Change of basis Matrix B
But: for given Lattice Λ, cannot take any d linear independent
vectors {b1, ..., bd} ⊂ Λ

x
0

Dual lattice Λ∗ = {y ∈ Rn | ∀v ∈ Λ : ⟨v , y⟩ ∈ Z}
Closed, countable, bounded subset S → L ∩ S finite

λ1: shortest distance between any two lattic points

Lattices - Properties

Basis B = {b1, ..., bd} ⊂ Rn linear independent

Lattice Λ =
{∑d

i=1 xibi | xi ∈ Z
}

Similar to vector subspace

Each point unique combination of basis vectors
Rank of lattice d ≤ n, full rank d = n
Change of basis Matrix B
But: for given Lattice Λ, cannot take any d linear independent
vectors {b1, ..., bd} ⊂ Λ

x
0

Dual lattice Λ∗ = {y ∈ Rn | ∀v ∈ Λ : ⟨v , y⟩ ∈ Z}

Closed, countable, bounded subset S → L ∩ S finite

λ1: shortest distance between any two lattic points

Lattices - Properties

Basis B = {b1, ..., bd} ⊂ Rn linear independent

Lattice Λ =
{∑d

i=1 xibi | xi ∈ Z
}

Similar to vector subspace

Each point unique combination of basis vectors
Rank of lattice d ≤ n, full rank d = n
Change of basis Matrix B
But: for given Lattice Λ, cannot take any d linear independent
vectors {b1, ..., bd} ⊂ Λ

x
0

Dual lattice Λ∗ = {y ∈ Rn | ∀v ∈ Λ : ⟨v , y⟩ ∈ Z}
Closed, countable, bounded subset S → L ∩ S finite

λ1: shortest distance between any two lattic points

Closest Vector Problem (CVP) and Shortest Vector
Problem (SVP)

Given a lattice basis B, find:

SVP: the shortest nonzero lattice point

CVP: the closest lattice point for a given point in Rn

SVP - Example

b1 =

1
2
2

 , b2 =

 2
0
−1

 , b3 =

 3
1
0.5

, 2b3 − 2b2 − b1 =

1
0
1

x

y

z

b1

b2

b3

SVP - Example

b1 =

1
2
2

 , b2 =

 2
0
−1

 , b3 =

 3
1
0.5

 , 2b3 − 2b2 − b1 =

1
0
1

x

y

z

b1

b2

b3

LLL Algorithm

Named after creators Lenstra, Lenstra, Lovász

Approximates SVP

Tries to calculate short orthogonal basis

Adaptation of Gram-Schmidt algorithm

Gram-Schmidt Algorithm

x

y

b1

b 2

b∗2

u ∗ b
1

Orthogonalize {b1, b2} to {b∗1, b∗2}
Normalize

Gram-Schmidt - On Lattice

x

y

b1

b 2

b∗2

u ∗ b
1

If u /∈ Z, then b∗2 /∈ L

Normalized Vector Generally not in L

LLL Algorithm - Goal

LLL reduced latice basis {b1, . . . , bn} with {b∗1, . . . , b∗n} from
Gram-Schmidt

∀i ̸= k : ui ,k =
⟨bk ,b∗i ⟩
⟨b∗i ,b

∗
i ⟩

≤ 1
2

∀i : ||b∗i+1 + ui ,i+1b
∗
i ||2 ≥ δ||b∗i ||2 (14 ≤ δ ≤ 1)

Swapping bi with bi+1 → b∗i ,new = b∗i+1 + ui ,i+1b
∗
i

Condition ensures not much smaller base when swapping

LLL Algorithm - Goal

LLL reduced latice basis {b1, . . . , bn} with {b∗1, . . . , b∗n} from
Gram-Schmidt

∀i ̸= k : ui ,k =
⟨bk ,b∗i ⟩
⟨b∗i ,b

∗
i ⟩

≤ 1
2

∀i : ||b∗i+1 + ui ,i+1b
∗
i ||2 ≥ δ||b∗i ||2 (14 ≤ δ ≤ 1)

Swapping bi with bi+1 → b∗i ,new = b∗i+1 + ui ,i+1b
∗
i

Condition ensures not much smaller base when swapping

LLL Algorithm - Goal

LLL reduced latice basis {b1, . . . , bn} with {b∗1, . . . , b∗n} from
Gram-Schmidt

∀i ̸= k : ui ,k =
⟨bk ,b∗i ⟩
⟨b∗i ,b

∗
i ⟩

≤ 1
2

∀i : ||b∗i+1 + ui ,i+1b
∗
i ||2 ≥ δ||b∗i ||2 (14 ≤ δ ≤ 1)

Swapping bi with bi+1 → b∗i ,new = b∗i+1 + ui ,i+1b
∗
i

Condition ensures not much smaller base when swapping

LLL Algorithm - Pseudocode

Step 1: Gram-Schmidt with rounded ui ,k

Step 2: If second condition not satisfied for index i , swap bi
and bi+1 and return to step 1

Learning Parity with Noise

Find s ∈ {0, 1}n

Given pairs (ai , bi = ⟨ai , s⟩+ ei mod 2)

ai ∈ {0, 1}n uniformly chosen

ei = 1 with probability ϵ ∈ (0, 1)

Can be written b = As + e, with

A =

aT1
aT2
...
aTm

 , e =

e1
e2
...
em

 , b =

b1
b2
...
bm

Learning Parity with Noise

Find s ∈ {0, 1}n

Given pairs (ai , bi = ⟨ai , s⟩+ ei mod 2)

ai ∈ {0, 1}n uniformly chosen

ei = 1 with probability ϵ ∈ (0, 1)

Can be written b = As + e, with

A =

aT1
aT2
...
aTm

 , e =

e1
e2
...
em

 , b =

b1
b2
...
bm

Learning Parity with Noise - Example

1s0 + 0s1 + 1s2 = 1 mod 2

1s0 + 1s1 + 0s2 = 0 mod 2

1s0 + 1s1 + 1s2 = 1 mod 2

Likely Solution:

s =

0
0
1

Learning Parity with Noise - Example

1s0 + 0s1 + 1s2 = 1 mod 2

1s0 + 1s1 + 0s2 = 0 mod 2

1s0 + 1s1 + 1s2 = 1 mod 2

Likely Solution:

s =

0
0
1

Learning Parity with Noise - Example

1s0 + 0s1 + 1s2 = 1 mod 2

1s0 + 1s1 + 0s2 = 0 mod 2

1s0 + 1s1 + 1s2 = 1 mod 2

Other Solution:

s =

1
0
0

Gaussian Elimination

Look at only calculating first bit of the secret

Use n equations with ai adding to (1, 0, . . . , 0)

Add equations

Gaussian Elimination

Example with ϵ = 1
4

1s0 + 0s1 + 1s2 = 1 mod 2

+

1s0 + 1s1 + 0s2 = 0 mod 2

+

1s0 + 1s1 + 1s2 = 1 mod 2

=

s0 = 0 mod 2

Chance of Success:(
3

4

)3

+ 3 ∗
(
1

4

)2

· 3
4
= 0.5625

Gaussian Elimination

Example with ϵ = 1
4

1s0 + 0s1 + 1s2 = 1 mod 2

+

1s0 + 1s1 + 0s2 = 0 mod 2

+

1s0 + 1s1 + 1s2 = 1 mod 2

=

s0 = 0 mod 2

Chance of Success:(
3

4

)3

+ 3 ∗
(
1

4

)2

· 3
4
= 0.5625

Learning with Errors (LWE)

Generalization of Learning Parity with Noise

Zq = {0, 1, . . . , q − 1} Instead of {0, 1}
Error ei ∈ Zq chosen from distribution χ

Given pairs (ai , ⟨ai , s⟩+ ei mod q)

ai ∈ Zn
q uniformly chosen

Recover s ∈ Zn
q

Learning with Errors (LWE)

Generalization of Learning Parity with Noise

Zq = {0, 1, . . . , q − 1} Instead of {0, 1}
Error ei ∈ Zq chosen from distribution χ

Given pairs (ai , ⟨ai , s⟩+ ei mod q)

ai ∈ Zn
q uniformly chosen

Recover s ∈ Zn
q

Error Distribution Ψα

Used for error distribution χ

Sample from N (0, α
2

2π)

Modulo 1 to value in [0, 1)

Multiply with p and round to next integer

Same as dividing [0, 1) in {0, 1p ,
2
p , . . . ,

p−1
p }

Error Distribution Ψα - Example

Ψα for p = 127 with α = 0.05 (left) and α = 0.1 (right)
Similar to discret gaussian distribution with standard deviation αp

1Source https://cims.nyu.edu/ regev/papers/qcrypto.pdf

Reduction LWE to CVP

Use LWE oracle to solve CVP

Given lattice Λ and point x ∈ Rn close to lattice point v ∈ Λ

Given samples yi on dual lattice Λ∗

Use the samples to create LWE, v as secret

Interprete x as v with error e

ai = (B∗)−1yi , representation in base of Λ∗

(ai mod q, bi = ⟨yi , x⟩ mod q)

Reduction LWE to CVP

Use LWE oracle to solve CVP

Given lattice Λ and point x ∈ Rn close to lattice point v ∈ Λ

Given samples yi on dual lattice Λ∗

Use the samples to create LWE, v as secret

Interprete x as v with error e

ai = (B∗)−1yi , representation in base of Λ∗

(ai mod q, bi = ⟨yi , x⟩ mod q)

Reduction LWE to CVP

Use LWE oracle to solve CVP

Given lattice Λ and point x ∈ Rn close to lattice point v ∈ Λ

Given samples yi on dual lattice Λ∗

Use the samples to create LWE, v as secret

Interprete x as v with error e

ai = (B∗)−1yi , representation in base of Λ∗

(ai mod q, bi = ⟨yi , x⟩ mod q)

Reduction LWE to CVP

Use LWE oracle to solve CVP

Given lattice Λ and point x ∈ Rn close to lattice point v ∈ Λ

Given samples yi on dual lattice Λ∗

Use the samples to create LWE, v as secret

Interprete x as v with error e

ai = (B∗)−1yi , representation in base of Λ∗

(ai mod q, bi = ⟨yi , x⟩ mod q)

Reduction LWE to CVP

bi = ⟨yi , x⟩ = ⟨yi , v⟩+ ⟨yi , e⟩ mod q

Change of basis matrix BT = (B∗)−1

⟨yi , v⟩ = ⟨(B∗)−1yi ,B
−1v⟩ = ⟨ai , s⟩ mod q

With ai ∈ Zn, s = B−1v ∈ Zn

Reduction LWE to CVP

bi = ⟨yi , x⟩ = ⟨yi , v⟩+ ⟨yi , e⟩ mod q

Change of basis matrix BT = (B∗)−1

⟨yi , v⟩ = ⟨(B∗)−1yi ,B
−1v⟩ = ⟨ai , s⟩ mod q

With ai ∈ Zn, s = B−1v ∈ Zn

Reduction LWE to CVP

bi = ⟨yi , x⟩ = ⟨yi , v⟩+ ⟨yi , e⟩ mod q

Change of basis matrix BT = (B∗)−1

⟨yi , v⟩ = ⟨(B∗)−1yi ,B
−1v⟩ = ⟨ai , s⟩ mod q

With ai ∈ Zn, s = B−1v ∈ Zn

Simple Encryption

Keygen

Secret s ∈ Zn
q

Public pairs (ai , bi = ⟨ai , s⟩+ ei)

Encrypt bit b

Choose indices J

Enc(b) = (
∑

i∈J ai ,
∑

i∈J bi + b · q/2) ∈ Zn
q × Zq

Decrypt (c1, c2)

calculate e =
∑

i∈J bi −
∑

i∈J⟨ai , s⟩ = c2 − ⟨c1, s⟩
b = 1 if e closer to q/2 than 0 mod q

Idea: sum of error terms stil small (<< q/2)

Simple Encryption

Keygen

Secret s ∈ Zn
q

Public pairs (ai , bi = ⟨ai , s⟩+ ei)

Encrypt bit b

Choose indices J

Enc(b) = (
∑

i∈J ai ,
∑

i∈J bi + b · q/2) ∈ Zn
q × Zq

Decrypt (c1, c2)

calculate e =
∑

i∈J bi −
∑

i∈J⟨ai , s⟩ = c2 − ⟨c1, s⟩
b = 1 if e closer to q/2 than 0 mod q

Idea: sum of error terms stil small (<< q/2)

Simple Encryption

Keygen

Secret s ∈ Zn
q

Public pairs (ai , bi = ⟨ai , s⟩+ ei)

Encrypt bit b

Choose indices J

Enc(b) = (
∑

i∈J ai ,
∑

i∈J bi + b · q/2) ∈ Zn
q × Zq

Decrypt (c1, c2)

calculate e =
∑

i∈J bi −
∑

i∈J⟨ai , s⟩ = c2 − ⟨c1, s⟩
b = 1 if e closer to q/2 than 0 mod q

Idea: sum of error terms stil small (<< q/2)

CRYSTALS Kyber - More practical Encryption

Ring LWE

R = Zq[X]/(X d + 1) instead of Zq

Polynom reduced by X d + 1

Coefficients in Zq

X 2 + 1 · X + 0 ∈ Z2[X]/(X 3 + 1)

Can store multiple bits in one polynom

CRYSTALS Kyber - More practical Encryption

Ring LWE

R = Zq[X]/(X d + 1) instead of Zq

Polynom reduced by X d + 1

Coefficients in Zq

X 2 + 1 · X + 0 ∈ Z2[X]/(X 3 + 1)

Can store multiple bits in one polynom

CRYSTALS Kyber - More practical Encryption

Ring LWE

R = Zq[X]/(X d + 1) instead of Zq

Polynom reduced by X d + 1

Coefficients in Zq

X 2 + 1 · X + 0 ∈ Z2[X]/(X 3 + 1)

Can store multiple bits in one polynom

CRYSTALS Kyber - More practical Encryption

Ring LWE

R = Zq[X]/(X d + 1) instead of Zq

Polynom reduced by X d + 1

Coefficients in Zq

X 2 + 1 · X + 0 ∈ Z2[X]/(X 3 + 1)

Can store multiple bits in one polynom

CRYSTALS Kyber - More practical Encryption

Ring LWE

R = Zq[X]/(X d + 1) instead of Zq

Polynom reduced by X d + 1

Coefficients in Zq

X 2 + 1 · X + 0 ∈ Z2[X]/(X 3 + 1)

Can store multiple bits in one polynom

CRYSTALS Kyber - More practical Encryption

Keygen

Secret s ∈ Rn

Public Key A ∈ Rn×n, t = As + e ∈ Rn

Encryption of m

choose e1, r ∈ Rn, e2 ∈ R

uT = rTA+ e1

v = rT t + e2 + q/2 ·m
c = (uT , v)

Decryption of c = (uT , v)

w = v − uT s

m = round(w)
q/2

CRYSTALS Kyber - More practical Encryption

Keygen

Secret s ∈ Rn

Public Key A ∈ Rn×n, t = As + e ∈ Rn

Encryption of m

choose e1, r ∈ Rn, e2 ∈ R

uT = rTA+ e1

v = rT t + e2 + q/2 ·m
c = (uT , v)

Decryption of c = (uT , v)

w = v − uT s

m = round(w)
q/2

CRYSTALS Kyber - More practical Encryption

Keygen

Secret s ∈ Rn

Public Key A ∈ Rn×n, t = As + e ∈ Rn

Encryption of m

choose e1, r ∈ Rn, e2 ∈ R

uT = rTA+ e1

v = rT t + e2 + q/2 ·m
c = (uT , v)

Decryption of c = (uT , v)

w = v − uT s

m = round(w)
q/2

CRYSTALS Kyber - More practical Encryption

v − uT s = rT t + e2 + q/2 ·m − (rTA+ e1)s

= q/2 ·m + rT e + e2 + e1s

= q/2 ·m + small

⇒ Rounded to m · q/2

CRYSTALS Kyber - More practical Encryption

v − uT s = rT t + e2 + q/2 ·m − (rTA+ e1)s

= rTAs + rT e + e2 + q/2 ·m − rTAs + e1s

= q/2 ·m + rT e + e2 + e1s

= q/2 ·m + small

⇒ Rounded to m · q/2

CRYSTALS Kyber - More practical Encryption

v − uT s = rT t + e2 + q/2 ·m − (rTA+ e1)s

= rTAs + rT e + e2 + q/2 ·m − rTAs − e1s

= q/2 ·m + rT e + e2 + e1s

= q/2 ·m + small

⇒ Rounded to m · q/2

CRYSTALS Kyber - More practical Encryption

v − uT s = rT t + e2 + q/2 ·m − (rTA+ e1)s

= rTAs + rT e + e2 + q/2 ·m − rTAs + e1s

= q/2 ·m + rT e + e2 + e1s

= q/2 ·m + small

⇒ Rounded to m · q/2

CRYSTALS Kyber - More practical Encryption

v − uT s = rT t + e2 + q/2 ·m − (rTA+ e1)s

= rTAs + rT e + e2 + q/2 ·m − rTAs + e1s

= q/2 ·m + rT e + e2 + e1s

= q/2 ·m + small

⇒ Rounded to m · q/2

Outlook

Signatures (Dilithium)

Fully Homomorphic Encryption

