Lattices and Hard Problems

Robert Brede

February 23, 2023

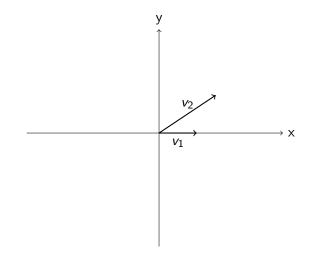
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Lattices
- Shortest Vector Problem, Closest Vector Problem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- LLL Algorithm
- Learning With Errors
 - Learning Parity with Noise
 - Reduction LWE to CVP
 - Usage of LWE

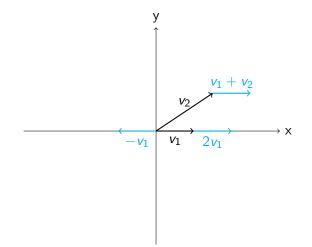
Lattices - Definition



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generating Vectors v_1, v_2

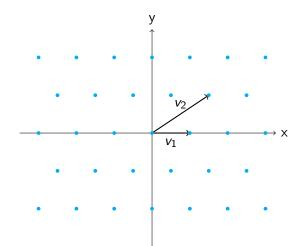
Lattices - Definition



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Linear combinations with integer coefficients

Lattices - Definition



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Lattice spanned by v_1 and v_2

• Generating Vectors $\{v_1, ..., v_m\} \subset \mathbb{R}^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Lattice $\Lambda = \{\sum_{i=1}^m x_i v_i \mid x_i \in \mathbb{Z}\}$

• There is smallest distance $\epsilon > 0$ between Points

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• There is smallest distance $\epsilon > 0$ between Points

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Counterexample: $v_1=(1), v_2=(\sqrt{2})\in \mathbb{R}^1$

- There is smallest distance $\epsilon > 0$ between Points
- Counterexample: $v_1=(1), v_2=(\sqrt{2})\in \mathbb{R}^1$

•
$$a_n = |a_{n-2} - a_{n-1}|, a_0 = v_1, a_1 = v_2$$

$$0 \quad \overrightarrow{a_4} \quad \overrightarrow{a_2} \quad \overrightarrow{a_3} \qquad \overrightarrow{v_1} \qquad \overrightarrow{v_2} \qquad \xrightarrow{} \qquad \times$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- There is smallest distance $\epsilon > 0$ between Points
- Counterexample: $v_1 = (1), v_2 = (\sqrt{2}) \in \mathbb{R}^1$

•
$$a_n = |a_{n-2} - a_{n-1}|, a_0 = v_1, a_1 = v_2$$

$$0 \quad \overrightarrow{a_4} \quad \overrightarrow{a_2} \quad \overrightarrow{a_3} \qquad \overrightarrow{v_1} \qquad \overrightarrow{v_2} \qquad \xrightarrow{} \qquad \times$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Converges to 0
- No ϵ exists

• Basis $B = \{b_1, ..., b_d\} \subset \mathbb{R}^n$ linear independent

(ロ)、(型)、(E)、(E)、 E) の(()

• Lattice
$$\Lambda = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}$$

- Basis $B = \{b_1,...,b_d\} \subset \mathbb{R}^n$ linear independent
- Lattice $\Lambda = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}$
- Similar to vector subspace
 - Each point unique combination of basis vectors
 - Rank of lattice $d \leq n$, full rank d = n
 - Change of basis Matrix B
 - But: for given Lattice A, cannot take any d linear independent vectors $\{b_1,...,b_d\}\subset \Lambda$

- Basis $B = \{b_1,...,b_d\} \subset \mathbb{R}^n$ linear independent
- Lattice $\Lambda = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}$
- Similar to vector subspace
 - Each point unique combination of basis vectors
 - Rank of lattice $d \leq n$, full rank d = n
 - Change of basis Matrix B
 - But: for given Lattice A, cannot take any d linear independent vectors $\{b_1,...,b_d\}\subset \Lambda$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Basis $B = \{b_1, ..., b_d\} \subset \mathbb{R}^n$ linear independent
- Lattice $\Lambda = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}$
- Similar to vector subspace
 - Each point unique combination of basis vectors
 - Rank of lattice $d \leq n$, full rank d = n
 - Change of basis Matrix B
 - But: for given Lattice A, cannot take any d linear independent vectors $\{b_1,...,b_d\} \subset \Lambda$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$0 \longrightarrow X \longrightarrow X$$

• Dual lattice $\Lambda^* = \{ y \in \mathbb{R}^n \mid \forall v \in \Lambda : \langle v, y \rangle \in \mathbb{Z} \}$

• Basis $B = \{b_1, ..., b_d\} \subset \mathbb{R}^n$ linear independent

• Lattice
$$\Lambda = \left\{ \sum_{i=1}^{d} x_i b_i \mid x_i \in \mathbb{Z} \right\}$$

- Similar to vector subspace
 - Each point unique combination of basis vectors
 - Rank of lattice $d \leq n$, full rank d = n
 - Change of basis Matrix B
 - But: for given Lattice A, cannot take any d linear independent vectors $\{b_1,...,b_d\} \subset \Lambda$

$$0 \longrightarrow X \longrightarrow X$$

- Dual lattice $\Lambda^* = \{ y \in \mathbb{R}^n \mid \forall v \in \Lambda : \langle v, y \rangle \in \mathbb{Z} \}$
- \bullet Closed, countable, bounded subset S \rightarrow L \cap S finite
- λ_1 : shortest distance between any two lattic points

Closest Vector Problem (CVP) and Shortest Vector Problem (SVP)

Given a lattice basis B, find:

- SVP: the shortest nonzero lattice point
- CVP: the closest lattice point for a given point in \mathbb{R}^n

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SVP - Example

$$b_{1} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, b_{2} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, b_{3} = \begin{pmatrix} 3 \\ 1 \\ 0.5 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

SVP - Example

$$b_{1} = \begin{pmatrix} 1\\2\\2 \end{pmatrix}, b_{2} = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}, b_{3} = \begin{pmatrix} 3\\1\\0.5 \end{pmatrix}, 2b_{3} - 2b_{2} - b_{1} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

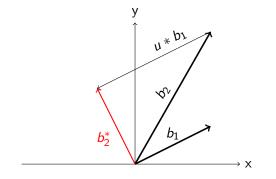
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Named after creators Lenstra, Lenstra, Lovász

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Approximates SVP
- Tries to calculate short orthogonal basis
- Adaptation of Gram-Schmidt algorithm

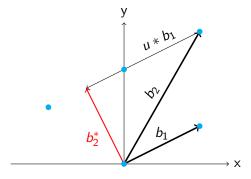
Gram-Schmidt Algorithm



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Orthogonalize $\{b_1, b_2\}$ to $\{b_1^*, b_2^*\}$
- Normalize

Gram-Schmidt - On Lattice



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- If $u \notin \mathbb{Z}$, then $b_2^* \notin L$
- Normalized Vector Generally not in L

LLL reduced latice basis $\{b_1,\,\ldots\,,b_n\}$ with $\{b_1^*,\,\ldots\,,b_n^*\}$ from Gram-Schmidt

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

•
$$\forall i \neq k : u_{i,k} = \frac{\langle b_k, b_i^* \rangle}{\langle b_i^*, b_i^* \rangle} \leq \frac{1}{2}$$

•
$$\forall i: ||b_{i+1}^* + u_{i,i+1}b_i^*||^2 \ge \delta ||b_i^*||^2 \quad (\frac{1}{4} \le \delta \le 1)$$

LLL reduced latice basis $\{b_1,\,\ldots\,,b_n\}$ with $\{b_1^*,\,\ldots\,,b_n^*\}$ from Gram-Schmidt

•
$$\forall i \neq k : u_{i,k} = \frac{\langle b_k, b_i^* \rangle}{\langle b_i^*, b_i^* \rangle} \leq \frac{1}{2}$$

•
$$\forall i: ||b_{i+1}^* + u_{i,i+1}b_i^*||^2 \ge \delta ||b_i^*||^2 \quad (\frac{1}{4} \le \delta \le 1)$$

• Swapping b_i with $b_{i+1} \rightarrow b^*_{i,new} = b^*_{i+1} + u_{i,i+1}b^*_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

LLL reduced latice basis $\{b_1,\,\ldots\,,b_n\}$ with $\{b_1^*,\,\ldots\,,b_n^*\}$ from Gram-Schmidt

•
$$\forall i \neq k : u_{i,k} = \frac{\langle b_k, b_i^* \rangle}{\langle b_i^*, b_i^* \rangle} \leq \frac{1}{2}$$

•
$$\forall i: ||b_{i+1}^* + u_{i,i+1}b_i^*||^2 \ge \delta ||b_i^*||^2 \quad (\frac{1}{4} \le \delta \le 1)$$

- Swapping b_i with $b_{i+1} \rightarrow b^*_{i,new} = b^*_{i+1} + u_{i,i+1}b^*_i$
- Condition ensures not much smaller base when swapping

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Step 1: Gram-Schmidt with rounded $u_{i,k}$
- Step 2: If second condition not satisfied for index *i*, swap *b_i* and *b_{i+1}* and return to step 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Learning Parity with Noise

- Find $s \in \{0,1\}^n$
- Given pairs $(a_i, b_i = \langle a_i, s \rangle + e_i \mod 2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $a_i \in \{0,1\}^n$ uniformly chosen
- $e_i = 1$ with probability $\epsilon \in (0, 1)$

Learning Parity with Noise

- Find $s \in \{0, 1\}^n$
- Given pairs $(a_i, b_i = \langle a_i, s \rangle + e_i \mod 2)$
- $a_i \in \{0,1\}^n$ uniformly chosen
- $e_i = 1$ with probability $\epsilon \in (0, 1)$
- Can be written b = As + e, with

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}, \ e = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $1s_0 + 0s_1 + 1s_2 = 1 \mod 2$
- $1s_0 + 1s_1 + 0s_2 = 0 \mod 2$
- $1s_0 + 1s_1 + 1s_2 = 1 \mod 2$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 $\begin{aligned} &1s_0 + 0s_1 + 1s_2 = 1 \mod 2 \\ &1s_0 + 1s_1 + 0s_2 = 0 \mod 2 \\ &1s_0 + 1s_1 + 1s_2 = 1 \mod 2 \end{aligned}$

Likely Solution:

$$s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\begin{aligned} &1s_0 + 0s_1 + 1s_2 = 1 \mod 2 \\ &1s_0 + 1s_1 + 0s_2 = 0 \mod 2 \\ &1s_0 + 1s_1 + 1s_2 = 1 \mod 2 \end{aligned}$

Other Solution:

$$s = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Look at only calculating first bit of the secret

• Use *n* equations with a_i adding to $(1, 0, \ldots, 0)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Add equations

Gaussian Elimination

Example with $\epsilon = \frac{1}{4}$ $1s_0 + 0s_1 + 1s_2 = 1 \mod 2$ + $1s_0 + 1s_1 + 0s_2 = 0 \mod 2$ + $1s_0 + 1s_1 + 1s_2 = 1 \mod 2$ = $s_0 = 0 \mod 2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Example with $\epsilon = \frac{1}{4}$ $1s_0 + 0s_1 + 1s_2 = 1 \mod 2$ + $1s_0 + 1s_1 + 0s_2 = 0 \mod 2$ + $1s_0 + 1s_1 + 1s_2 = 1 \mod 2$ $s_0 = 0 \mod 2$

Chance of Success:

$$\left(\frac{3}{4}\right)^3 + 3 * \left(\frac{1}{4}\right)^2 \cdot \frac{3}{4} = 0.5625$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Generalization of Learning Parity with Noise
 - $\mathbb{Z}_q = \{0, 1, \ldots, q-1\}$ Instead of $\{0, 1\}$
 - Error $e_i \in \mathbb{Z}_q$ chosen from distribution χ

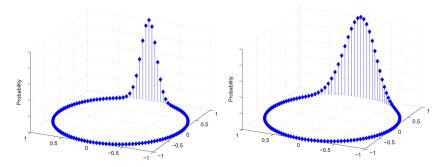
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Generalization of Learning Parity with Noise
 - $\mathbb{Z}_q = \{0, 1, \ldots, q-1\}$ Instead of $\{0, 1\}$
 - Error $e_i \in \mathbb{Z}_q$ chosen from distribution χ

- Given pairs $(a_i, \langle a_i, s \rangle + e_i \mod q)$
- $a_i \in \mathbb{Z}_q^n$ uniformly chosen
- Recover $s \in \mathbb{Z}_q^n$

- \bullet Used for error distribution χ
- Sample from $\mathcal{N}(0, \frac{\alpha^2}{2\pi})$
- Modulo 1 to value in [0, 1)
- Multiply with p and round to next integer
- Same as dividing [0, 1) in $\{0, \frac{1}{p}, \frac{2}{p}, \ldots, \frac{p-1}{p}\}$

Error Distribution Ψ_{α} - Example



 Ψ_{α} for p = 127 with $\alpha = 0.05$ (left) and $\alpha = 0.1$ (right) Similar to discret gaussian distribution with standard deviation αp

- Use LWE oracle to solve CVP
- Given lattice Λ and point $x \in \mathbb{R}^n$ close to lattice point $v \in \Lambda$

- Use LWE oracle to solve CVP
- Given lattice Λ and point $x \in \mathbb{R}^n$ close to lattice point $v \in \Lambda$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Given samples y_i on dual lattice Λ^*

- Use LWE oracle to solve CVP
- Given lattice Λ and point $x \in \mathbb{R}^n$ close to lattice point $v \in \Lambda$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Given samples y_i on dual lattice Λ^*
- Use the samples to create LWE, v as secret
- Interprete x as v with error e

- Use LWE oracle to solve CVP
- Given lattice Λ and point $x \in \mathbb{R}^n$ close to lattice point $v \in \Lambda$

- Given samples y_i on dual lattice Λ^*
- Use the samples to create LWE, v as secret
- Interprete x as v with error e
- $a_i = (B^*)^{-1} y_i$, representation in base of Λ^*
- $(a_i \mod q, b_i = \langle y_i, x \rangle \mod q)$

•
$$b_i = \langle y_i, x \rangle = \langle y_i, v \rangle + \langle y_i, e \rangle \mod q$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$b_i = \langle y_i, x \rangle = \langle y_i, v \rangle + \langle y_i, e \rangle \mod q$$

- Change of basis matrix $B^T = (B^*)^{-1}$
- $\langle y_i, v \rangle = \langle (B^*)^{-1} y_i, B^{-1} v \rangle = \langle a_i, s \rangle \mod q$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

•
$$b_i = \langle y_i, x \rangle = \langle y_i, v \rangle + \langle y_i, e \rangle \mod q$$

- Change of basis matrix $B^T = (B^*)^{-1}$
- $\langle y_i, v \rangle = \langle (B^*)^{-1} y_i, B^{-1} v \rangle = \langle a_i, s \rangle \mod q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• With
$$a_i \in \mathbb{Z}^n$$
, $s = B^{-1}v \in \mathbb{Z}^n$

Keygen

- Secret $s \in \mathbb{Z}_q^n$
- Public pairs $(a_i, b_i = \langle a_i, s \rangle + e_i)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Keygen

- Secret $s \in \mathbb{Z}_q^n$
- Public pairs $(a_i, b_i = \langle a_i, s \rangle + e_i)$

Encrypt bit b

- Choose indices J
- Enc(b) = $(\sum_{i \in J} a_i, \sum_{i \in J} b_i + b \cdot q/2) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Keygen

- Secret $s \in \mathbb{Z}_q^n$
- Public pairs $(a_i, b_i = \langle a_i, s \rangle + e_i)$

Encrypt bit b

• Choose indices J

• $\mathsf{Enc}(\mathsf{b}) = (\sum_{i \in J} a_i, \ \sum_{i \in J} b_i + b \cdot q/2) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ Decrypt (c_1, c_2)

• calculate $e = \sum_{i \in J} b_i - \sum_{i \in J} \langle a_i, s \rangle = c_2 - \langle c_1, s \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- b = 1 if e closer to q/2 than 0 mod q
- Idea: sum of error terms stil small (<< q/2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Ring LWE

• $R = Z_q[X]/(X^d + 1)$ instead of Z_q

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ring LWE

- $R = Z_q[X]/(X^d + 1)$ instead of Z_q
- Polynom reduced by $X^d + 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ring LWE

- $R = Z_q[X]/(X^d + 1)$ instead of Z_q
- Polynom reduced by $X^d + 1$
- Coefficients in Z_q

Ring LWE

- $R = Z_q[X]/(X^d + 1)$ instead of Z_q
- Polynom reduced by $X^d + 1$
- Coefficients in Z_q

•
$$X^2 + 1 \cdot X + 0 \in Z_2[X]/(X^3 + 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ring LWE

- $R = Z_q[X]/(X^d + 1)$ instead of Z_q
- Polynom reduced by $X^d + 1$
- Coefficients in Z_q

•
$$X^2 + 1 \cdot X + 0 \in Z_2[X]/(X^3 + 1)$$

• Can store multiple bits in one polynom

Keygen

- Secret $s \in R^n$
- Public Key $A \in R^{n \times n}, t = As + e \in R^n$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Keygen

- Secret $s \in R^n$
- Public Key $A \in R^{n \times n}, t = As + e \in R^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Encryption of m

- choose $e_1, r \in R^n, e_2 \in R$
- $u^T = r^T A + e_1$
- $v = r^T t + e_2 + q/2 \cdot m$
- $c = (u^T, v)$

Keygen

- Secret $s \in R^n$
- Public Key $A \in R^{n \times n}, t = As + e \in R^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Encryption of m

• choose $e_1, r \in R^n, e_2 \in R$ • $u^T = r^T A + e_1$ • $v = r^T t + e_2 + q/2 \cdot m$ • $c = (u^T, v)$ Decryption of $c = (u^T, v)$ • $w = v - u^T s$ • $m = \frac{round(w)}{q/2}$

$$v - u^T s = r^T t + e_2 + q/2 \cdot m - (r^T A + e_1)s$$

$$v - u^T s = r^T t + e_2 + q/2 \cdot m - (r^T A + e_1)s$$

= $r^T As + r^T e + e_2 + q/2 \cdot m - r^T As + e_1s$

$$v - u^T s = r^T t + e_2 + q/2 \cdot m - (r^T A + e_1)s$$

= $r^T As + r^T e + e_2 + q/2 \cdot m - r^T As - e_1s$

$$v - u^{T}s = r^{T}t + e_{2} + q/2 \cdot m - (r^{T}A + e_{1})s$$

= $r^{T}As + r^{T}e + e_{2} + q/2 \cdot m - r^{T}As + e_{1}s$
= $q/2 \cdot m + r^{T}e + e_{2} + e_{1}s$
= $q/2 \cdot m + small$

$$v - u^{T}s = r^{T}t + e_{2} + q/2 \cdot m - (r^{T}A + e_{1})s$$

= $r^{T}As + r^{T}e + e_{2} + q/2 \cdot m - r^{T}As + e_{1}s$
= $q/2 \cdot m + r^{T}e + e_{2} + e_{1}s$
= $q/2 \cdot m + small$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 \Rightarrow Rounded to $m \cdot q/2$

- Signatures (Dilithium)
- Fully Homomorphic Encryption

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ