
1/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Introduction to Static Analysis
Using static analysis to find vulnerabilities at scale
Simon Gerst | 28. Juli 2022

kitctf.de

https://kitctf.de

Static Analysis
Analyzing programs without execution
Accurate analysis is impossiblea in general
But we can use approximations

→ Trade-off: Accuracy vs. performance

− Low(er) accuracy on big and complicated
programs

+ Can find vulnerabilities that dynamic analysis
cannot find
E.g. bug is only present on rare configurations

aHalting problem and Rice’s theorem :(

Dynamic Analysis
Analyzing programs during execution
(Usually) By observing a real or virtual CPU

− Need a way to observe the program
+ High accuracy
+ Can find vulnerabilities that static analysis

cannot find
E.g. service A writes to file B and another service
C then reads file B unsafely, leading to RCE

2/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Static Analysis vs. Dynamic Analysis

Static Analysis
Analyzing programs without execution
Accurate analysis is impossiblea in general
But we can use approximations

→ Trade-off: Accuracy vs. performance
− Low(er) accuracy on big and complicated

programs
+ Can find vulnerabilities that dynamic analysis

cannot find
E.g. bug is only present on rare configurations

aHalting problem and Rice’s theorem :(

Dynamic Analysis
Analyzing programs during execution
(Usually) By observing a real or virtual CPU

− Need a way to observe the program
+ High accuracy
+ Can find vulnerabilities that static analysis

cannot find
E.g. service A writes to file B and another service
C then reads file B unsafely, leading to RCE

2/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Static Analysis vs. Dynamic Analysis

Static Analysis
Analyzing programs without execution
Accurate analysis is impossiblea in general
But we can use approximations

→ Trade-off: Accuracy vs. performance
− Low(er) accuracy on big and complicated

programs
+ Can find vulnerabilities that dynamic analysis

cannot find
E.g. bug is only present on rare configurations

aHalting problem and Rice’s theorem :(

Dynamic Analysis
Analyzing programs during execution
(Usually) By observing a real or virtual CPU

− Need a way to observe the program
+ High accuracy
+ Can find vulnerabilities that static analysis

cannot find
E.g. service A writes to file B and another service
C then reads file B unsafely, leading to RCE

2/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Static Analysis vs. Dynamic Analysis

Source-based
Source code needed
Compilation-based:

Code needs to be compiled
CodeQL, Clang Static Analyzer, (Facebook)
Infer

No compilation needed:
Cppcheck, Joern, Semgrep

Binary-based
Works directly on a binary
Joern
Decompilation + source-based analyzer works
somewhat12

1https://www.s3.eurecom.fr/docs/asiaccs22_mantovani.pdf
2https://security.humanativaspa.it/automating-binary-vulnerability-discovery-with-ghidra-and-semgrep/

3/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Source-based vs. Binary-based

https://www.s3.eurecom.fr/docs/asiaccs22_mantovani.pdf
https://security.humanativaspa.it/automating-binary-vulnerability-discovery-with-ghidra-and-semgrep/

Source-based
Source code needed
Compilation-based:

Code needs to be compiled
CodeQL, Clang Static Analyzer, (Facebook)
Infer

No compilation needed:
Cppcheck, Joern, Semgrep

Binary-based
Works directly on a binary
Joern
Decompilation + source-based analyzer works
somewhat12

1https://www.s3.eurecom.fr/docs/asiaccs22_mantovani.pdf
2https://security.humanativaspa.it/automating-binary-vulnerability-discovery-with-ghidra-and-semgrep/

3/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Source-based vs. Binary-based

https://www.s3.eurecom.fr/docs/asiaccs22_mantovani.pdf
https://security.humanativaspa.it/automating-binary-vulnerability-discovery-with-ghidra-and-semgrep/

CodeQL
Developed by Semmle/GitHub
All queries and most extractors are open source
Evaluator is closed source :(
C/C++, Javascript, Java, Kotlina, Python
C#
Rubyb

Go
Swifta

aPlanned.
bBeta.

Joern
Developed by ShiftLeft
All queries and all extractors are open source
Evaluator is open source
C/C++a, Javascriptb, Javab, Kotlinb, Pythonb

PHPb

x86 assemblyb

Java bytecodeb

aHigh maturity.
bMedium maturity.

4/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL & Joern

CodeQL
Developed by Semmle/GitHub
All queries and most extractors are open source
Evaluator is closed source :(
C/C++, Javascript, Java, Kotlina, Python
C#
Rubyb

Go
Swifta

aPlanned.
bBeta.

Joern
Developed by ShiftLeft
All queries and all extractors are open source
Evaluator is open source
C/C++a, Javascriptb, Javab, Kotlinb, Pythonb

PHPb

x86 assemblyb

Java bytecodeb

aHigh maturity.
bMedium maturity.

4/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL & Joern

Joern
Based on code property graphsa (AST+CFG+PDG)
First mentioned in 2016
Domain specific “CPG query language”
(C/C++): “uid should be changed before gid when dropping privileges”

cpg
. method (" (? i) s e t (r e s | r e | e |) u i d ")
. c a l l I n
. whereNot (_ . dominatedBy . i s C a l l . name (" s e t (r e s | r e | e |) ? g i d "))

ahttps://comsecuris.com/papers/06956589.pdf

5/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Joern

https://comsecuris.com/papers/06956589.pdf

CodeQL
Based on Datalog
Logical, read-only, object-oriented and declarative (no side effects)
First mentioned in 2007a

Programming language + query engine and related tools
(Java): “override equals and hashCode in classes”

from C l a s s c
where c . dec l a r e sMethod (" e qua l s ") and

not (c . dec l a r e sMethod (" hashCode ")) and
c . f romSource ()

s e l e c t c . getPackage () , c

ahttps://link.springer.com/chapter/10.1007/978-3-540-88643-3_3

6/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL

https://link.springer.com/chapter/10.1007/978-3-540-88643-3_3

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software
What if there is another bug with a similar
cause?
Manually check all potential cases?
Very tedious → automate it
Higher false-positive rate is acceptable
Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software

What if there is another bug with a similar
cause?
Manually check all potential cases?
Very tedious → automate it
Higher false-positive rate is acceptable
Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software
What if there is another bug with a similar
cause?

Manually check all potential cases?
Very tedious → automate it
Higher false-positive rate is acceptable
Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software
What if there is another bug with a similar
cause?
Manually check all potential cases?

Very tedious → automate it
Higher false-positive rate is acceptable
Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software
What if there is another bug with a similar
cause?
Manually check all potential cases?
Very tedious → automate it
Higher false-positive rate is acceptable

Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

Static analysis
Write query for general bug class, e.g. XSS
Run query against thousands of repositories
Low false-positive rate wanted

Variant analysis
You found a bug in a software
What if there is another bug with a similar
cause?
Manually check all potential cases?
Very tedious → automate it
Higher false-positive rate is acceptable
Example: Hunting bugs in Accel-PPP with
CodeQL3

3https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

7/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL Use-Cases

https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f
https://medium.com/csg-govtech/hunting-bugs-in-accel-ppp-with-codeql-8370e297e18f

SQL-like: Define what you want, not how

import <language> (where language is java, javascript , etc.)
from Class javaStringClass

where javaStringClass .hasQualifiedName("java.lang", "String")

select javaStringClass , "This␣ is␣the␣Java␣String␣class ."

Basically first-order logic:
< ∀|∃ > x .somePredicate (x) ≡ <forall | exists >(<Type> x | somePredicate(x))

< ∧| ∨ | → |¬ > ≡ <and|or| implies |not>

[1, 10] ≡ [1..10] (inclusive range from 1 to 10)
=, is the equality operator
_, is the don’t care value
x instanceof <Type> ≡ holds if x is of type <Type>

8/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Structure & Syntax

SQL-like: Define what you want, not how
import <language> (where language is java, javascript , etc.)
from Class javaStringClass

where javaStringClass .hasQualifiedName("java.lang", "String")

select javaStringClass , "This␣ is␣the␣Java␣String␣class ."

Basically first-order logic:
< ∀|∃ > x .somePredicate (x) ≡ <forall | exists >(<Type> x | somePredicate(x))

< ∧| ∨ | → |¬ > ≡ <and|or| implies |not>

[1, 10] ≡ [1..10] (inclusive range from 1 to 10)
=, is the equality operator
_, is the don’t care value
x instanceof <Type> ≡ holds if x is of type <Type>

8/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Structure & Syntax

SQL-like: Define what you want, not how
import <language> (where language is java, javascript , etc.)
from Class javaStringClass

where javaStringClass .hasQualifiedName("java.lang", "String")

select javaStringClass , "This␣ is␣the␣Java␣String␣class ."

Basically first-order logic:
< ∀|∃ > x .somePredicate (x) ≡ <forall | exists >(<Type> x | somePredicate(x))

< ∧| ∨ | → |¬ > ≡ <and|or| implies |not>

[1, 10] ≡ [1..10] (inclusive range from 1 to 10)
=, is the equality operator
_, is the don’t care value
x instanceof <Type> ≡ holds if x is of type <Type>

8/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Structure & Syntax

boolean: true and false

float : 64-bit (!) floating point numbers, such as 6.28 and -0.618
int : 32-bit two’s complement integers, such as -1 and 42
string : Finite strings of 16-bit characters
Custom class es: Class, Method, MethodAccess, . . .

9/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Types

Create reusable logic and give it a name

Predicates without result
p r e d i c a t e isSmal lEvenNumber (i n t i) {

i % 2 = 0 and // i s even ?
i i n [1 . . 1 0] // i s sma l l ?

}

from i n t i
where isSmal lEvenNumber (i)
s e l e c t i , " i s ␣ even . "

Query result
i message
2 is even.
4 is even.
6 is even.
8 is even.
10 is even.

10/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Predicates

Create reusable logic and give it a name

Predicates without result
p r e d i c a t e isSmal lEvenNumber (i n t i) {

i % 2 = 0 and // i s even ?
i i n [1 . . 1 0] // i s sma l l ?

}

from i n t i
where isSmal lEvenNumber (i)
s e l e c t i , " i s ␣ even . "

Query result
i message
2 is even.
4 is even.
6 is even.
8 is even.
10 is even.

10/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Predicates

Predicates with result
s t r i n g g e tC r e a t o r (s t r i n g l anguage) {

language = " Java " and r e s u l t = "Sun"
or
l anguage = " Rust " and r e s u l t = " Moz i l l a "
o r
l anguage = "C#" and r e s u l t = " M i c r o s o f t "

}

from s t r i n g c r e a t o r
where g e tC r e a t o r (_) = c r e a t o r and

c r e a t o r . p r e f i x (1) = "M"
s e l e c t c r e a t o r , " C r ea t o r ␣ s t a r t s ␣ wi th ␣ ’M ’ . "

Query result
creator message

Microsoft Creator starts with ’M’.
Mozilla Creator starts with ’M’.

Syntactic sugar
<type> name(<t1> var1, ...) (with explicit result)
≡
predicate name(<type> result, <t1> var1, ...)
(desugared)

11/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Predicates With Result

Predicates with result
s t r i n g g e tC r e a t o r (s t r i n g l anguage) {

language = " Java " and r e s u l t = "Sun"
or
l anguage = " Rust " and r e s u l t = " Moz i l l a "
o r
l anguage = "C#" and r e s u l t = " M i c r o s o f t "

}

from s t r i n g c r e a t o r
where g e tC r e a t o r (_) = c r e a t o r and

c r e a t o r . p r e f i x (1) = "M"
s e l e c t c r e a t o r , " C r ea t o r ␣ s t a r t s ␣ wi th ␣ ’M ’ . "

Query result
creator message

Microsoft Creator starts with ’M’.
Mozilla Creator starts with ’M’.

Syntactic sugar
<type> name(<t1> var1, ...) (with explicit result)
≡
predicate name(<type> result, <t1> var1, ...)
(desugared)

11/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Predicates With Result

Predicates with result
s t r i n g g e tC r e a t o r (s t r i n g l anguage) {

language = " Java " and r e s u l t = "Sun"
or
l anguage = " Rust " and r e s u l t = " Moz i l l a "
o r
l anguage = "C#" and r e s u l t = " M i c r o s o f t "

}

from s t r i n g c r e a t o r
where g e tC r e a t o r (_) = c r e a t o r and

c r e a t o r . p r e f i x (1) = "M"
s e l e c t c r e a t o r , " C r ea t o r ␣ s t a r t s ␣ wi th ␣ ’M ’ . "

Query result
creator message

Microsoft Creator starts with ’M’.
Mozilla Creator starts with ’M’.

Syntactic sugar
<type> name(<t1> var1, ...) (with explicit result)
≡
predicate name(<type> result, <t1> var1, ...)
(desugared)

11/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Predicates With Result

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation
a hasSupertype b ⇔ a has b as a supertype
Rectangle hasSupertype Shape

Square hasSupertype Shape

RedRectangle hasSupertype Rectangle

Circle hasSupertype Shape

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type () = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type () = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type () = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

How to also find classes that transitively extend Shape?

getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type+() = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)

getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Sample Java class hierarchy

c l a s s Rec tang l e e x t end s Shape {}
c l a s s Square ex t end s Rec tang l e {}
c l a s s RedRectang le e x t end s Rec tang l e {}
c l a s s C i r c l e e x t end s Shape {}

hasSupertype relation as a graph
Shape

Circle Rectangle

RedRectangle Square

How to find classes that extend Shape?
→ Find all c such that c hasSupertype Shape holds

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type+() = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

How to also find classes that transitively extend Shape?
getASupertype+() ≡ transitive closure („all paths with
one or more steps“)
getASupertype∗() ≡ transitive reflexive closure („all
paths with zero or more steps“)
+ and ∗ can be applied to any binary predicate

12/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Transitive Closure

Predicates can recursively call other predicates

Counting from 0 to 10

i n t getANumber () {
r e s u l t = 0
or
r e s u l t <= 10 and r e s u l t = getANumber () + 1

}

getASupertype+() can be rewritten using recursion

Rewriting transitive closures

C l a s s g e tASup e r t y p eT r an s i t i v e () {
r e s u l t = t h i s . ge tASuper type ()
or
r e s u l t = t h i s . getASupT () . getASupTTrans ()

}

13/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Recursion

Predicates can recursively call other predicates

Counting from 0 to 10

i n t getANumber () {
r e s u l t = 0
or
r e s u l t <= 10 and r e s u l t = getANumber () + 1

}

getASupertype+() can be rewritten using recursion

Rewriting transitive closures

C l a s s g e tASup e r t y p eT r an s i t i v e () {
r e s u l t = t h i s . ge tASuper type ()
or
r e s u l t = t h i s . getASupT () . getASupTTrans ()

}

13/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Recursion

Describe a set of values
→ Easy reuse

Without using classes

from C l a s s c , C l a s s s hapeC l a s s
where c . getASuper type+() = shapeC l a s s and

shapeC l a s s . hasName (" Shape ")
s e l e c t c

Rewritten using classes

c l a s s Shape ex t end s C l a s s {
Shape () {

t h i s . hasName (" Shape ")
}

}

from C l a s s c
where c . getASuper type+() i n s t a n c e o f Shape
s e l e c t c

14/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Classes

Characteristic predicates

c l a s s Foo ex t end s Bar {
Foo () { . . . }

}

Foo() { ... } is the characteristic predicate of
class Foo

Foo is the set of all values for which the
characteristic predicate holds

Multiple inheritance

c l a s s Spec ia lNumber ex t end s OddNumber ,
PowerOfThreeNumber {

}

SpecialNumber is the intersection of OddNumber
and PowerOfThreeNumber

SpecialNumber is the set of all values for which the
characteristic predicate of OddNumber holds and
the characteristic predicate of
PowerOfThreeNumber holds

15/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Classes 2

Characteristic predicates

c l a s s Foo ex t end s Bar {
Foo () { . . . }

}

Foo() { ... } is the characteristic predicate of
class Foo

Foo is the set of all values for which the
characteristic predicate holds

Multiple inheritance

c l a s s Spec ia lNumber ex t end s OddNumber ,
PowerOfThreeNumber {

}

SpecialNumber is the intersection of OddNumber
and PowerOfThreeNumber

SpecialNumber is the set of all values for which the
characteristic predicate of OddNumber holds and
the characteristic predicate of
PowerOfThreeNumber holds

15/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Classes 2

Casts
Allow constraining the type of an expression

Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!

Don’t know to what type x can be cast?
→ x.getAPrimaryQlClass() gets the name of a primary

(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

from ReturnStmt retStmt , Expr r e tV a l
where re tStmt . g e tR e s u l t () = r e tVa l
s e l e c t r e tV a l

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

from ReturnStmt retStmt , Expr r e tV a l
where re tStmt . g e tR e s u l t () = r e tVa l
s e l e c t r e tV a l

getResult returns an expression, can we cast this
to a division?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

from ReturnStmt retStmt , Expr r e tV a l
where re tStmt . g e tR e s u l t () = r e tVa l
s e l e c t r e tVa l , r e tV a l . ge tAPr imaryQ lC la s s ()

getResult returns an expression, can we cast this
to a division?

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

from ReturnStmt retStmt , Expr r e tV a l
where re tStmt . g e tR e s u l t () = r e tVa l
s e l e c t r e tVa l , r e tV a l . ge tAPr imaryQ lC la s s ()

Yes! We get DivExpr as a result, so we can cast
to it

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

Casts
Allow constraining the type of an expression
Postfix style cast: x .(Foo) restricts the type of x
to Foo

Prefix style cast: (Foo)x also restricts the type of
x to Foo

x.(Foo) is exactly equivalent to ((Foo)x)

Prefix style casts are practically never used!
Don’t know to what type x can be cast?

→ x.getAPrimaryQlClass() gets the name of a primary
(most precise) QL class of x (only use for
debugging!)

Most specific type

p u b l i c i n t midpo in t (i n t low , i n t h igh) {
r e t u r n (low + h igh) / 2 ;

}

How to find all returns that are a division by two?

from ReturnStmt retStmt , DivExpr r e tV a l
where

re tStmt . g e tR e s u l t () = r e tVa l and
r e tV a l . getR ightOperand ()
. (I n t e g e r L i t e r a l) . g e t I n tVa l u e () = 2

s e l e c t r e tV a l

16/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Casts

lgtm.com
Written in „Query console“ (basic editor with
auto-complete)
Run directly against projects (no account
needed)
Aggregate projects to lists and run against
hundreds of projects (needs account)
Some very large projects may be unavailable and
can not be queried → VSCode + Plugin

VSCode + Plugin
VSCode + CodeQL extension for Visual Studio
Code
Recommended to use the starter workspace4

Databases can be downloaded5 from lgtm.com
and imported
Can use codeql binary to manually build
databases for projects unavailable on lgtm.com

4https://github.com/github/vscode-codeql-starter
5E.g. this database for PowerShell https://lgtm.com/projects/g/PowerShell/PowerShell/ci/#ql

17/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Writing Queries

https://github.com/github/vscode-codeql-starter
https://lgtm.com/projects/g/PowerShell/PowerShell/ci/#ql

lgtm.com
Written in „Query console“ (basic editor with
auto-complete)
Run directly against projects (no account
needed)
Aggregate projects to lists and run against
hundreds of projects (needs account)
Some very large projects may be unavailable and
can not be queried → VSCode + Plugin

VSCode + Plugin
VSCode + CodeQL extension for Visual Studio
Code
Recommended to use the starter workspace4

Databases can be downloaded5 from lgtm.com
and imported
Can use codeql binary to manually build
databases for projects unavailable on lgtm.com

4https://github.com/github/vscode-codeql-starter
5E.g. this database for PowerShell https://lgtm.com/projects/g/PowerShell/PowerShell/ci/#ql

17/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

CodeQL - Writing Queries

https://github.com/github/vscode-codeql-starter
https://lgtm.com/projects/g/PowerShell/PowerShell/ci/#ql

Pretty simple process:
1 Find interesting vulnerability pattern, write new query
2 Run query against hundreds of projects using the lgtm.com platform
3 Many false-positives? If so, refine query and goto 2
4 Else, find security contact for project
5 Report and get CVE if needed (E.g. no CVE needed for personal test projects)

Time (very rough guesstimate)
Query writing: 10 hours
Reviewing initial query results and refinements: 3-5 hours
Finding security contacts, writing reports and getting CVEs: 10-20 hours

→ Contacting and reporting can take far longer than writing!
90-day deadline + unresponsive vendors = pain

18/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Finding Vulnerabilities at Scale

lgtm.com

Pretty simple process:
1 Find interesting vulnerability pattern, write new query
2 Run query against hundreds of projects using the lgtm.com platform
3 Many false-positives? If so, refine query and goto 2
4 Else, find security contact for project
5 Report and get CVE if needed (E.g. no CVE needed for personal test projects)

Time (very rough guesstimate)
Query writing: 10 hours
Reviewing initial query results and refinements: 3-5 hours
Finding security contacts, writing reports and getting CVEs: 10-20 hours

→ Contacting and reporting can take far longer than writing!
90-day deadline + unresponsive vendors = pain

18/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Finding Vulnerabilities at Scale

lgtm.com

All for one, one for all
Write a query that models a new vulnerability
class (that is not already modeled)
Find at least one CVE that the query covers –
CVE is not mandatory to be new/discovered by
you
The more severe CVEs, the better
Awards of up to $6000 USD can be granted

The Bug Slayer
Use your previously written query to find and fix
vulnerabilities
Find at least four new vulnerabilities of high
severity, or two new vulnerabilities of critical
severity
Awards of up to $7,800 USD for multiple critical
CVEs can be granted

6https://securitylab.github.com/bounties/

19/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

GitHub Security Lab Bounty Program6

https://securitylab.github.com/bounties/

All for one, one for all
Write a query that models a new vulnerability
class (that is not already modeled)
Find at least one CVE that the query covers –
CVE is not mandatory to be new/discovered by
you
The more severe CVEs, the better
Awards of up to $6000 USD can be granted

The Bug Slayer
Use your previously written query to find and fix
vulnerabilities
Find at least four new vulnerabilities of high
severity, or two new vulnerabilities of critical
severity
Awards of up to $7,800 USD for multiple critical
CVEs can be granted

6https://securitylab.github.com/bounties/

19/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

GitHub Security Lab Bounty Program6

https://securitylab.github.com/bounties/

https://codeql.github.com/docs/codeql-language-guides/
abstract-syntax-tree-classes-for-working-with-java-programs/

https://codeql.github.com/docs/codeql-language-guides/

https://codeql.github.com/docs/codeql-language-guides/codeql-for-java/

https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/

https://codeql.github.com/docs/writing-codeql-queries/codeql-queries/

https://jorgectf.gitlab.io/blog/post/practical-codeql-introduction/

https://help.semmle.com/QL/ql-support/ql-training/

https://intrigus.org/research/2021/08/05/
finding-insecure-jwt-signature-validation-with-codeql/ (shameless plug)

20/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

Resources

https://codeql.github.com/docs/codeql-language-guides/abstract-syntax-tree-classes-for-working-with-java-programs/
https://codeql.github.com/docs/codeql-language-guides/abstract-syntax-tree-classes-for-working-with-java-programs/
https://codeql.github.com/docs/codeql-language-guides/
https://codeql.github.com/docs/codeql-language-guides/codeql-for-java/
https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/
https://codeql.github.com/docs/writing-codeql-queries/codeql-queries/
https://jorgectf.gitlab.io/blog/post/practical-codeql-introduction/
https://help.semmle.com/QL/ql-support/ql-training/
https://intrigus.org/research/2021/08/05/finding-insecure-jwt-signature-validation-with-codeql/
https://intrigus.org/research/2021/08/05/finding-insecure-jwt-signature-validation-with-codeql/

Questions?
Ping intrigus on Slack

or
DM @intrigus_ on twitter (note the underscore)

or
open a discussion at

https://github.com/github/codeql/discussions

21/21 28. Juli 2022 KITCTF: Introduction to Static Analysis

https://github.com/github/codeql/discussions

